Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543073

RESUMO

Low-grade chronic inflammation and adipocyte dysfunction are prominent risk factors of insulin resistance and type 2 diabetes mellitus (T2DM) in obesity. Thus, prevention of inflammation and adipocyte dysfunction could be one possible approach to mitigate T2DM development. Several Ficus species have been used in traditional medicine for ameliorating inflammation and T2DM. Our previous studies reported biological effects of Ficus lindsayana including antioxidant, anti-cancer, and anti-α-glucosidase activities. Further, this study therefore investigated whether F. lindsayana latex (FLLE) and root (FLRE) extracts inhibit inflammation-stimulated insulin resistance in adipocytes and inflammation in macrophages. FLLE and FLRE (200 µg/mL) had no significant cytotoxicity for macrophages, adipocytes, and blood cells (PBMCs and RBCs). FLRE had a total flavonoid content about three times higher than FLLE, while both had similar levels of total phenolic content. FLRE showed higher abilities than FLLE in suppressing inflammation in both macrophages and adipocytes and reversing the inflammation-induced insulin resistance in adipocytes. In TNF-α-induced adipocytes, FLRE significantly improved insulin-induced glucose uptake and insulin-suppressed lipolysis, while FLLE only significantly improved glucose uptake. Moreover, FLRE and FLLE remarkably reduced chemoattractant (MCP-1) but improved adipogenic (PPARγ and CEBPα) gene expression, leading to the promotion of adipogenesis and the suppression of insulin resistance. In LPS-induced macrophages, FLRE, but not FLLE, significantly inhibited LPS-induced NO production. Moreover, FLRE significantly reduced LPS-stimulated iNOS, COX-2, IL-1ß, IL-6, and TNF-α gene expression. These results may provide the potential data for the development of this plant, especially the root part, as an alternative medicine, functional ingredient, or food supplement for the prevention of inflammation and obesity-associated insulin resistance, as well as T2DM.

2.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543127

RESUMO

Alzheimer's disease (AD) is the most common type of dementia and a significant concern to global public health due to the prevalence of aging populations. Donepezil is one of only a few medications approved for use as an anti-AD agent but all have adverse side effects. Reducing the dosage of AD drugs with plant extracts (phytotherapy) while maintaining efficacy is one strategy to minimize adverse side effects. We previously reported the anti-AD properties of an edible fern, Diplazium esculentum (Retz.) Sw. (DE), which inhibited key enzymes involved in AD pathogenesis including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and ß-secretase 1 (BACE-1). This study aimed to determine whether DE exhibited a synergistic effect with donepezil. The enzyme inhibitory assay showed that DE extract and its bioactive compounds, kaempferol, and quercetin, slightly impeded AChE inhibition with donepezil, while DE extract and quercetin showed synergistic or additive effects with donepezil against BChE and BACE-1, respectively. DE extract combined with donepezil also improved eye phenotypes in a Drosophila model of AD by preventing ommatidia atrophia and bristle breakages. Furthermore, the DE extract exhibited no genotoxic activities, as determined by the Ames test. Our data revealed that DE extract showed promise when combined with donepezil during AD treatment by targeting BChE and BACE-1.

3.
Nanomaterials (Basel) ; 13(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37887954

RESUMO

Selenium nanoparticles (SeNPs) are worthy of attention and development for nutritional supplementation due to their health benefits in both animals and humans with low toxicity, improved bioavailability, and controlled release, being greater than the Se inorganic and organic forms. Our previous study reported that Anoectochilus burmannicus extract (ABE)-synthesized SeNPs (ABE-SeNPs) exerted antioxidant and anti-inflammatory activities. Furthermore, ABE could stabilize and preserve the biological activities of SeNPs. To promote the ABE-SeNPs as supplementary and functional foods, it was necessary to carry out a safety assessment. Cytotoxicity testing showed that SeNPs and ABE-SeNPs were harmless with no killing effect on Caco2 (intestinal epithelial cells), MRC-5 (lung fibroblasts), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and 3T3-L1 (adipocytes), and were not toxic to isolated human PBMCs and RBCs. Genotoxicity assessments found that SeNPs and ABE-SeNPs did not induce mutations in Salmonella typhimurium TA98 and TA100 (Ames test) as well as in Drosophila melanogaster (somatic mutation and recombination test). Noticeably, ABE-SeNPs inhibited mutation in TA98 and TA100 induced by AF-2, and in Drosophila induced by urethane, ethyl methanesulfonate, and mitomycin c, suggesting their anti-mutagenicity ability. This study provides data that support the safety and anti-genotoxicity properties of ABE-SeNPs for the further development of SeNPs-based food supplements.

4.
Nutrients ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904098

RESUMO

The existence of neuroinflammation and oxidative stress surrounding amyloid beta (Aß) plaques, a hallmark of Alzheimer's disease (AD), has been demonstrated and may result in the activation of neuronal death and inhibition of neurogenesis. Therefore, dysregulation of neuroinflammation and oxidative stress is one possible therapeutic target for AD. Kaempferia parviflora Wall. ex Baker (KP), a member of the Zingiberaceae family, possesses health-promoting benefits including anti-oxidative stress and anti-inflammation in vitro and in vivo with a high level of safety; however, the role of KP in suppressing Aß-mediated neuroinflammation and neuronal differentiation has not yet been investigated. The neuroprotective effects of KP extract against Aß42 have been examined in both monoculture and co-culture systems of mouse neuroectodermal (NE-4C) stem cells and BV-2 microglia cells. Our results showed that fractions of KP extract containing 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone protected neural stem cells (both undifferentiated and differentiated) and microglia activation from Aß42-induced neuroinflammation and oxidative stress in both monoculture and co-culture system of microglia and neuronal stem cells. Interestingly, KP extracts also prevented Aß42-suppressed neurogenesis, possibly due to the contained methoxyflavone derivatives. Our data indicated the promising role of KP in treating AD through the suppression of neuroinflammation and oxidative stress induced by Aß peptides.


Assuntos
Doença de Alzheimer , Células-Tronco Neurais , Zingiberaceae , Camundongos , Animais , Peptídeos beta-Amiloides/farmacologia , Extratos Vegetais/farmacologia , Técnicas de Cocultura , Microglia , Doenças Neuroinflamatórias , Inflamação , Doença de Alzheimer/tratamento farmacológico
5.
Nutrients ; 15(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839375

RESUMO

Anoectochilus burmannicus is an orchid that contains phenolic compounds and exhibits antioxidant and anti-inflammation properties. This study aimed to investigate whether its ethanolic extract (ABE) can be used as a reducing agent and/or a stabilizer of nano-selenium (SeNP) synthesis. SeNPs exhibited higher antioxidant activity than ABE-SeNPs. In contrast, ABE-SeNP (4 µM Se) had greater anti-inflammatory activity in LPS-induced macrophages than SeNPs. Interestingly, ABE acted as a stabilizer for SeNPs by preventing particle aggregation and preserving its antioxidant activity after long-term storage (90 days). Moreover, after the freeze-drying process, ABE-SeNPs could be completely reconstituted to suspension with significantly stable antioxidant and anti-inflammatory activities compared to freshly prepared particles, suggesting the cryoprotectant and/or lyoprotectant role of ABE. The present study shows the potential of ABE as an effective stabilizer for nanoparticles and provides evidence for the development of ABE-SeNPs as a food supplement or novel functional ingredient for health benefits.


Assuntos
Nanopartículas , Selênio , Antioxidantes/farmacologia , Selênio/farmacologia , Anti-Inflamatórios
6.
Foods ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231602

RESUMO

The aril and seed of nutmeg, Myristica fragrans Houtt. (Myristicaceae), hold significant value in various industries globally. Our preliminary research found two morphological variations: a globose shape and an oval shape. Due to these different characteristics, the safety of consumers is of primary concern. Thus, authentication and comparative pharmacological and toxicity analyses are necessary. In this study, pharmacognostic and advanced phytochemical analyses, DNA barcoding, cytotoxicity, and the anti-nitric oxide production of commercial Thai nutmeg were examined. Via morphologic examinations and TLC fingerprinting, all the sampled aril and seed were categorized into globose and oval-shaped groups. The results of HPLC, GC-MS, and LC-MS/MS experiments revealed distinct differences between these groups. The DNA barcoding of the trnH-psbA region using the BLAST method and neighbor-joining tree analyses confirmed the globose nutmeg as M. fragrans and the oval-shaped variant as M. argentea. A comparison was then carried out between the potential toxicity and anti-inflammatory capabilities of M. fragrans and M. argentea. Cytotoxicity tests on HaCaT, 3T3-L1, Caco-2, HEK293, and RAW264.7 were performed using both methanolic extracts and volatile oil from the arils and seeds of both species. This study concludes that blending or substituting these two species maintains their therapeutic integrity without posing safety concerns.

7.
Sci Rep ; 12(1): 15472, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104433

RESUMO

Ficus dubia latex is recognized as a remedy in Asian traditional medicine with various therapeutic effects. The present study aimed to determine the preventive action of Ficus dubia latex extract (FDLE) on 1,2-dimethylhydrazine (DMH)-induced rat colorectal carcinogenesis and its mechanisms. The experiment included an initiation model in which rats were orally administered with FDLE daily for 1 week before DMH injection until the end of the experiment, while only after DMH injection until the end in the post-initiation model. The results firstly indicated that FDLE treatment could reduce the level of methylazoxymethanol (MAM) in rat colonic lumen by inhibition of the activities of both phase I xenobiotic metabolizing enzymes in the liver and ß-glucuronidase in the colon, leading to reduced DNA methylation in colonic mucosal cells, related to the number of ACF in the initiation stage. Besides, FDLE modulated the inflammation which could suppress the growth and induce apoptosis of aberrant colonic mucosal cells, leading to retardation of ACF multiplicity. Therefore, FDLE showed the ability to suppress the DMH-induced rat ACF formation and inflammation promoted growth of ACF. In conclusion, FDLE had the potential to prevent carcinogens-induced rat colorectal carcinogenesis in the initiation stage.


Assuntos
Neoplasias do Colo , Ficus , Animais , Ratos , 1,2-Dimetilidrazina/toxicidade , Apoptose , Carcinogênese , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Dimetilidrazinas , Inflamação , Látex/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Xenobióticos/farmacologia
8.
Cancers (Basel) ; 14(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681644

RESUMO

Colorectal cancer is one of the most diagnosed cancers that is associated with inflammation. Ficus dubia latex is recognized as a remedy with various therapeutic effects in traditional medicine, including anti-inflammatory and antioxidant activity. The present study aims to compare the anti-tumor activity of Ficus dubia latex extract (FDLE) against HCT-116 and HT-29 human colorectal cancer cell lines in normal and inflammatory condition and explore its mechanism of action. FDLE exhibited remarkable antiproliferative activity against HCT-116 and HT-29 colorectal cancer cell lines in both conditions using MTT and colony formation assays and more effective anti-proliferation was observed in inflammatory condition. Mechanistically, FDLE induced cell cycle arrest at G0/G1 phase by down-regulating NF-κB, cyclin D1, CDK4 and up-regulatingp21 in both cell in normal condition. In inflammatory condition, FDLE not only exhibited stronger induction of cell cycle arrest in both cells by down-regulating NF-κB, cyclin D1, CDK4 and down-regulating p21, but also selectively induced apoptosis in HCT-116 cells by down-regulating NF-κB and Bcl-xl and up-regulating Bid, Bak, cleaved caspase-7 and caspase-3 through stronger ability to regulate these proteins. Our results demonstrated that the phytochemical agent in the latex of Ficus dubia could potential be used for treatment and prevention of human colorectal cancer, especially in inflammation-induced hyperproliferation progression.

9.
J Ethnopharmacol ; 296: 115440, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35671865

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phikud Navakot (PN), a mixture of nine herbal plants, is an ancient Thai traditional medicine used for relieving circulatory disorders and dizziness. PN has also shown anti-inflammatory effects in rats with acute myocardial infarction. Moreover, phytochemical-inhibiting neuroinflammation, including gallic acid, vanillic acid, ferulic acid, and rutin were detected in PN extract; however, the anti-neuroinflammatory activity of PN extract and its components in a coculture system of microglia and neuronal cells is limited. OBJECTIVE: To investigate the anti-neuroinflammatory activities of PN on lipopolysaccharide (LPS)-induced inflammation in a coculture system of microglia and neuronal cells. METHODS: ELISA and qRT-PCR were used to assess cytokine expression. The phosphorylation of mitogen-activated protein kinases (MAPKs) was determined by Western blotting. Microglia-mediated neuroinflammation was evaluated using a BV-2 microglia-N2a neuron transwell co-culture. RESULTS: PN extract and its component, gallic acid, decreased LPS-induced the mRNA expression of interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS), as well as IL-6 protein levels in both microglial monoculture and coculture systems. This was accompanied by a reduction in neurodegeneration triggered by microglia in N2a neurons with increased neuronal integrity markers (ßIII tubulin and tyrosine hydroxylase (TH)). These effects were caused by the ability of PN extract to inhibit extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. CONCLUSION: This is the first study to show that PN extract inhibits neurodegeneration in LPS-activated BV-2 microglia by targeting ERK signaling activity.


Assuntos
Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Microglia , Extratos Vegetais , Animais , Técnicas de Cocultura , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ratos
10.
Sci Rep ; 11(1): 23796, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893659

RESUMO

Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aß), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aß-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aß42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Gleiquênias/química , Extratos Vegetais/farmacologia , Agregação Patológica de Proteínas/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Comportamento Animal , Produtos Biológicos , Biomarcadores , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Fragmentos de Peptídeos/metabolismo , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico
11.
Artigo em Inglês | MEDLINE | ID: mdl-34539802

RESUMO

Inhibiting neuroinflammation and modulating neurite outgrowth could be a promising strategy to prevent neurological disorders. Emblica officinalis (EO) may be a potent agent against them. Although EO extract reportedly has anti-inflammatory properties in macrophages, there is limited knowledge about its neuroprotective activity by suppressing microglia-mediated proinflammatory cytokine production and inducing neurite outgrowth. The present study aimed to elucidate the effect of EO fruit extract on the lipopolysaccharide- (LPS-) induced neuroinflammation using microglial (BV2) and neuroblastoma (Neuro2a) cells. The results demonstrated that, in LPS-treated BV2 cells, EO fruit extract reduced nitric oxide, interleukin-6, and tumor necrotic factor-α production. It also enhanced the neurite length of Neuro2a cells, which was linked to the upregulation of TuJ1 and MAP2 expressions. In conclusion, these findings indicate that the ethanolic extract of EO fruits has promising neuroprotective potential to exhibit antineuroinflammation activity and accelerative effect on neurite outgrowth in vitro. Therefore, EO fruit extract can be considered a novel herbal medicine candidate for managing neuroinflammatory diseases.

12.
Sci Rep ; 11(1): 16899, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413383

RESUMO

Since 2006, Ficus dubia has been reported as a new Ficus species in Thailand. As per our recent report, the red-brown aqueous extract of F. dubia sap (FDS) has been determined to strongly exhibit in vitro anti-radicals. However, the phytochemicals in the FDS extract related to health-promoting antioxidation have not been explored. Thus, in this study, we aimed to investigate the chemical components of the F. dubia sap extract by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-MS/QTOF-MS) and its potential use in cosmetics in terms of cellular antioxidation on keratinocytes (HaCaT), phototoxicity, and irritation on 3D skin cell models following standard tests suggested by the Organization for Economic Cooperation and Development (OECD). It was found that the sap extract was composed of quinic acid and caffeoyl derivatives (e.g., syringoylquinic acid, 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and dimeric forms of caffeoylquinic acids). The extract has significantly exhibited antioxidant activity against H2O2-induced oxidative stress in HaCaT cells. The cellular antioxidative effect of the FDS extract was remarkably dependent on the presence of 3- and 4-O-caffeoylquinic acid in the extract. Furthermore, the FDS extract showed negative results on skin phototoxicity and irritation. Overall, the results reveal that the FDS extract could be developed as a new antioxidant candidate for a skin healthcare product.


Assuntos
Antioxidantes/análise , Ficus/química , Extratos Vegetais/química , Pele/química , Espectrometria de Massas em Tandem , Água/química , Células 3T3 , Animais , Sobrevivência Celular , Células HaCaT , Humanos , Luz , Camundongos , Fenóis/análise , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Testes de Irritação da Pele
13.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206628

RESUMO

Black rice is a type of rice in the Oryza sativa L. species. There are numerous reports regarding the pharmacological actions of black rice bran, but scientific evidence on its gastroprotection is limited. This study aimed to evaluate the gastroprotective activities of black rice bran ethanol extract (BRB) from the Thai black rice variety Hom Nil (O. sativa L. indica) as well as its mechanisms of action, acute oral toxicity in rats, and phytochemical screening. Rat models of gastric ulcers induced by acidified ethanol, indomethacin, and restraint water immersion stress were used. After pretreatment with 200, 400, and 800 mg/kg of BRB in test groups, BRB at 800 mg/kg significantly inhibited the formation of gastric ulcers in all gastric ulcer models, and this inhibition seemed to be dose dependent in an indomethacin-induced gastric ulcer model. BRB could not normalize the amount of gastric wall mucus, reduce gastric volume and total acidity, or increase gastric pH. Although BRB could not increase NO levels in gastric tissue, the tissue MDA levels could be normalized with DPPH radical scavenging activity. These results confirm the gastroprotective activities of BRB with a possible mechanism of action via antioxidant activity. The major phytochemical components of BRB comprise carotenoid derivatives with the presence of phenolic compounds. These components may be responsible for the gastroprotective activities of BRB. The 2000 mg/kg dose of oral BRB showed no acute toxicity in rats and confirmed, in part, the safe uses of BRB.


Assuntos
Antiulcerosos , Etanol/química , Indometacina/efeitos adversos , Oryza/química , Fitoterapia , Extratos Vegetais , Úlcera Gástrica , Animais , Antiulcerosos/química , Antiulcerosos/farmacologia , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Indometacina/farmacologia , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Úlcera Gástrica/patologia
14.
J Ethnopharmacol ; 280: 114452, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34311061

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Anoectochilus species is a small terrestrial orchid found in tropical and subtropical rain forest. These orchids are traditionally used extensively in China, Taiwan, and Vietnam due to their medicinal properties and therapeutic benefits. They are employed for treatment in different systems, such as stomach disorders, chest pain, arthritis, tumor, piles, boils, menstrual disorders, and inflammation. Aqueous extract of Anoectochilus burmannicus (AB) has been previously reported to exhibit anti-inflammatory activities, however there is a lack of evidence regarding its bioactive compounds and the mechanism of its actions. AIM OF THE STUDY: The objectives of this study were to identify the anti-inflammatory compound(s) in an ethanolic extract of AB and to determine its anti-inflammatory mechanisms in LPS-stimulated macrophages and also its safety. MATERIALS AND METHODS: The ethanolic extract of AB (ABE) was prepared and subsequently subjected to polarity-dependent extraction using n-hexane and ethyl acetate, which would result in isolation of the n-hexane (ABH), ethyl acetate (ABEA), and residue or aqueous (ABA) fractions. The AB fractions were investigated to determine total phenolic and flavonoid content, antioxidant capacity, toxicity, and safety in RAW 264.7 macrophages, human PBMCs, and RBCs. After extraction anti-inflammation screening of each extract was performed by nitric oxide (NO) production assay. The active fractions were further examined for their effect on proinflammatory mediators. In addition, kinsenoside content in the active fractions was identified using LC-MS/MS. Cellular toxicity and genotoxicity of AB were also tested using the wing spot test in Drosophila melanogaster. RESULTS: The data showed that ABEA had the highest phenolic content and level of antioxidant activities. ABE, ABEA, and ABA, but not ABH, significantly inhibited the LPS-stimulated NO production in the macrophages. Both ABEA and ABA reduced LPS-mediated expression of TNF-α, IL-6, iNOS, and COX-2 at both mRNA and protein levels. Besides, only ABEA notably diminished the LPS-stimulated p65 phosphorylation required for nuclear translocation and transcriptional activation of the nuclear factor-κB (NF-κB). Interestingly, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed ABA contained a high level of kinsenoside, a likely anti-inflammatory compound, while ABE and ABEA might require other compounds in combination with kinsenoside for the inhibition of inflammation. It was shown that all active fractions were neither cytotoxic nor genotoxic. CONCLUSION: Our study demonstrated that the hydrophilic fractions of AB exhibit anti-inflammatory activity in LPS-stimulated macrophages. The mechanism used by the AB involves the scavenging of free radicals and the reduction of proinflammatory mediators, including IL-1ß, IL-6, TNF-α, NO, iNOS and COX-2. The anti-inflammatory action of AB involves the suppression of the NF-κB signaling pathway by some unknown component(s) present in ABEA. This study found that kinsenoside is a major active compound in ABA which could be used as a biomarker for the quality control of the plant extraction. This study provides convincing significant information in vitro regarding the anti-inflammatory mechanism and preliminary evidence of the safety of Anoectochilus burmanicus. Therefore, the knowledge acquired from this study would provide supportive evidence for the development and standardization of the use of the extract of this plant as alternative medicine or functional food to prevent or treat non-communicable chronic diseases related to chronic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Orchidaceae/química , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/toxicidade , Bioensaio , Cromatografia Líquida , Drosophila melanogaster , Etanol/química , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Óxido Nítrico/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Células RAW 264.7 , Espectrometria de Massas em Tandem
15.
Biology (Basel) ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916174

RESUMO

Many medicinal plants have been used to treat wounds. Here, we revealed the potential wound healing effects of Curcuma amarissima (CA). Our cell viability assay showed that CA extract increased the viability of HaCaT cells that were cultured in the absence of serum. This increase in cell viability was proved to be associated with the pharmacological activities of CA extract in inducing cell proliferation. To further define possible molecular mechanisms of action, we performed Western blot analysis and immunofluorescence study, and our data demonstrated that CA extract rapidly induced ERK1/2 and Akt activation. Consistently, CA extract accelerated cell migration, resulting in rapid healing of wounded human keratinocyte monolayer. Specifically, the CA-induced increase of cell monolayer wound healing was blocked by the MEK inhibitor (U0126) or the PI3K inhibitor (LY294002). Moreover, CA extract induced the expression of Mcl-1, which is an anti-apoptotic protein, supporting that CA extract enhances human keratinocyte survival. Taken together, our study provided convincing evidence that Curcuma amarissima can promote proliferation and survival of human keratinocyte through stimulating the MAPK and PI3K/Akt signaling cascades. These promising data emphasize the possibility to develop this plant as a wound healing agent for the potential application in regenerative medicine.

16.
Food Sci Nutr ; 9(4): 2269-2279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841843

RESUMO

Ficus species have been used as a typical component in food and folk medicine in Asia for centuries. However, little is known regarding the bioactivity and genotoxicity of the recently identified Ficus dubia (FD), an indigenous plant of the tropical evergreen rain forest. FD is unique from other Ficus species because of its highly sought-after red-brown latex. Antioxidant properties together with phenolic and flavonoid contents of FD were elucidated. Health-promoting characteristics were examined by studying the inhibition of enzymes as a drug target for diabetes, hypertension, Alzheimer's disease, and obesity, together with anticancer ability against human colorectal adenocarcinoma, human hepatocellular carcinoma, human ovarian carcinoma, human prostate adenocarcinoma, and human lung carcinoma. Besides, FD genotoxicity was tested using the Drosophila wing spot test. Results showed that both FD root and latex exhibited antioxidant activity due to the presence of phenolics and flavonoids, specifically caffeic acid and cyanidin. The ethanolic fraction of FD root demonstrated a potent antidiabetic mechanism underlying α-glucosidase inhibitory activity similar to acarbose. This fraction also suppressed lung and ovarian cancer growth, possibly by G1 and G2/M arrest, respectively. All tested fractions lacked mutagenicity in vivo. Results indicated that FD can be developed as novel antidiabetic compounds; however, its bioactive compounds should be further identified.

17.
J Ethnopharmacol ; 266: 113398, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32971162

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chiang-Da, Gymnema inodorum (Lour.) Decne. (GI), is an ethnomedicinal plant that has been used for diabetic treatment since ancient times. One of the anti-diabetic mechanisms is possibly related to the actions of triterpene glycoside, (3ß, 16ß)-16,28-dihydroxyolean-12-en-3-yl-O-ß-D-glucopyranosyl-ß-D-glucopyranosiduronic acid (GIA1) in decreasing carbohydrate digestive enzymes and intestinal glucose absorption in the gut system. AIMS OF THE STUDY: To observe the amount of GIA1 in GI leaf extracts obtained from different ethanol concentrations and to investigate the anti-hyperglycemic mechanisms of the extracts and GIA1. MATERIALS AND METHODS: The crude extracts were prepared using 50%v/v to 95%v/v ethanol solutions and used for GIA1 isolation. The anti-hyperglycemic models included in our study examined the inhibitory activities of α-amylase/α-glucosidase and intestinal glucose absorption related to sodium glucose cotransporter type 1 (SGLT1) using Caco-2 cells. RESULTS: GIA1 was found about 8%w/w to 18%w/w in the GI extract depending on ethanol concentrations. The GI extracts and GIA1 showed less inhibitory activities on α-amylase. The extracts from 75%v/v and 95%v/v ethanol and GIA1 significantly delayed the glycemic absorption by lowering α-glucosidase activity and glucose transportation of SGLT1. However, the 50%v/v ethanolic extract markedly decreased the α-glucosidase activity than the SGLT1 function. CONCLUSION: Differences in the GIA1 contents and anti-glycemic properties of the GI leaf extract was dependent on ethanol concentrations. Furthermore, the inhibitory effects of the 75%v/v and 95%v/v ethanolic extracts on α-glucosidase and SGLT1 were relevant to GIA1 content.


Assuntos
Gymnema/química , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Triterpenos/farmacologia , Células CACO-2 , Metabolismo dos Carboidratos/efeitos dos fármacos , Digestão/efeitos dos fármacos , Glucose/metabolismo , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Absorção Intestinal/efeitos dos fármacos , Folhas de Planta , Saponinas/isolamento & purificação , Triterpenos/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
18.
J Toxicol Environ Health A ; 84(7): 298-312, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33375906

RESUMO

The worldwide demand for a natural dye by the cosmetic and food industry has recently gained interest. To provide scientific data supporting the usage of Thai henna leaf as a natural colorant, the phytochemical constituents, safety, and bioactivity of aqueous extract of the henna leaf by autoclave (HAE) and hot water (HHE) were determined. HAE contained a higher amount of total phenolic and flavonoid contents than HHE. The major constituents in both extracts were ferulic acid, gallic acid, and luteolin. The extracts displayed no marked mutagenic activity both in vitro and in vivo mammalian-like biotransformation. HAE and HHE also exhibited non-cytotoxicity to human immortalized keratinocyte cells (HaCaT), peripheral blood mononuclear cells (PBMCs), and murine macrophage RAW 264.7 cell line with IC20 and IC50 > 200 µg/ml. The extracts exhibited antioxidant and anti-inflammatory activity as evidenced by significant scavenging of ABTS and DPPH radicals and decreasing NO levels in LPS-induced RAW 264.7 cells. The antioxidant and anti-inflammatory properties of the extracts might be attributed to their phenolic and flavonoid contents. In conclusion, the traditional use of henna as a natural dye appears not to exert toxic effects and seems biosecure. Regarding safety, antioxidant, and anti-inflammatory properties, the aqueous extract of Thai henna leaf might thus serve as a readily available source for utilization in commercial health industries.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Lawsonia (Planta)/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/efeitos adversos , Antioxidantes/efeitos adversos , Humanos , Queratinócitos/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Compostos Fitoquímicos/efeitos adversos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7
19.
Biomed Pharmacother ; 133: 111002, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33212374

RESUMO

Boesenbergia rotunda (BR) has long been used as tradition medicine. For its pharmacological effects on wound healing, previous studies in an animal model provided convincing results that the ethanolic extract from the rhizome of this plant can stimulate wound healing. However, the mechanism about how this plant promotes wound healing at the molecular level has not been elucidated. As a step towards the development of wound healing agents, our current study utilized a human keratinocyte cell line (HaCaT) as an in vitro model to define the potential molecular mechanisms of BR extract in enhancing wound-healing. Our HPLC results showed that BR extract contained kaempferol as one of its potential compounds. The extract strongly promoted wound healing of HaCaT cell monolayer. This effect was eventually defined to be regulated through the ability of BR extract to induce cell proliferation. At the signaling level, we discovered that BR extract rapidly activated ERK1/2 and Akt phosphorylation upon the addition of the extract. Additionally, our experiments where specific inhibitors of MEK (U0126) and PI3K (LY294002) were utilized verified that BR enhanced cell proliferation and wound healing through stimulating the MAPK and PI3K/Akt signal transduction pathways. Moreover, direct inhibition of keratinocyte DNA synthesis by mitomycin C (MMC) could completely block the proliferative effects of BR extract. Nevertheless, data from Transwell migration assay revealed that BR extract did not promote keratinocyte migration. Altogether, we provided more evidence that BR possesses its wound healing-promoting action through the activation of proliferation and survival pathways, and our study suggests that BR is an interesting candidate to be developed as a wound healing-promoting agent.


Assuntos
Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização/efeitos dos fármacos , Zingiberaceae , Linhagem Celular , Ativação Enzimática , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Fosforilação , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Zingiberaceae/química
20.
Int J Mol Sci ; 21(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079307

RESUMO

:Artocarpus lakoocha Roxb. (AL) has been known for its high content of stilbenoids, especially oxyresveratrol. AL has been used in Thai traditional medicine for centuries. However, the role of AL in regulating inflammation has not been elucidated. Here we investigated the molecular mechanisms underlying the anti-inflammation of AL ethanolic extract in RAW 264.7 murine macrophage cell line. The HPLC results revealed that this plant was rich in oxyresveratrol, and AL ethanolic extract exhibited anti-inflammatory properties. In particular, AL extract decreased lipopolysaccharide (LPS)-mediated production and secretion of cytokines and chemokine, including IL-6, TNF-α, and MCP-1. Consistently, the extract inhibited the production of nitric oxide (NO) in the supernatants of LPS-stimulated cells. Data from the immunofluorescence study showed that AL extract suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. Results from Western blot analysis further confirmed that AL extract strongly prevented the LPS-induced degradation of IκB which is normally required for the activation of NF-κB. The protein expression of iNOS and COX-2 in response to LPS stimulation was significantly decreased with the presence of AL extract. AL extract was found to play an anti-inflammatory role, in part through inhibiting LPS-induced activation of Akt. The extract had negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Specifically, incubation of cells with the extract for only 3 h demonstrated the rapid action of AL extract on inhibiting the phosphorylation of Akt, but not ERK1/2. Longer exposure (24 h) to AL extract was required to mildly reduce the phosphorylation of ERK1/2, p38, and JNK MAPKs. These results indicate that AL extract manipulates its anti-inflammatory effects mainly through blocking the PI3K/Akt and NF-κB signal transduction pathways. Collectively, we believe that AL could be a potential alternative agent for alleviating excessive inflammation in many inflammation-associated diseases.


Assuntos
Artocarpus/química , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA