Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(44): 31059-31066, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37881762

RESUMO

Renewed interest towards natural substances has been pushed by the widespread diffusion of antibiotic resistance. Curcumin I is the most active and effective constituent of curcuminoids extracted from Curcuma longa and, among other beneficial effects, attracted attention for its antimicrobial potential. Since the poor pharmacokinetic profile hinders its efficient utilization, in the present paper, we report encapsulation of curcumin I in poly(styrene-co-maleic acid) (SMA-CUR) providing a nanomicellar system with improved aqueous solubility and bioavailability. SMA-CUR was characterized by means of size, zeta potential, polydispersity index, atomic force microscopy (AFM), drug release studies, spectroscopic properties and stability. SMA-CUR nanoformulation displayed exciting antimicrobial properties compared to free curcumin I towards Gram-positive and Gram-negative clinical isolates.

2.
Daru ; 28(1): 387-401, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32060737

RESUMO

Pain represents an unpleasant sensation linked to actual or potential tissue damage. In the early phase, the sensation of pain is caused due to direct stimulation of the sensory nerve fibers. On the other hand, the pain in the late phase is attributed to inflammatory mediators. Current medicines used to treat inflammation and pain are effective; however, they cause severe side effects, such as ulcer, anemia, osteoporosis, and endocrine disruption. Increased attention is recently being focused on the examination of the analgesic potential of phytoconstituents, such as glycosides of traditional medicinal plants, because they often have suitable biological activities with fewer side effects as compared to synthetic drugs. The purpose of this article is to review for the first time the current state of knowledge on the use of glycosides from medicinal plants to induce analgesia and anti-inflammatory effect. Various databases and search engines, including PubMed, ScienceDirect, Scopus, Web of Science and Google Scholar, were used to search and collect relevant studies on glycosides with antinociceptive activities. The results led to the identification of several glycosides that exhibited marked inhibition of various pain mediators based on different well-established assays. Additionally, these glycosides were found to induce most of the analgesic effects through cyclooxygenase and lipoxygenase pathways. These findings can be useful to identify new candidates which can be clinically developed as analgesics with better bioavailability and reduced side effects. Graphical abstract Analgesic mechanisms of plant glycosides.


Assuntos
Analgésicos/uso terapêutico , Glicosídeos/uso terapêutico , Dor/tratamento farmacológico , Animais , Humanos , Fitoterapia , Plantas Medicinais
3.
Biotechnol Adv ; 38: 107343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30716389

RESUMO

Cardiovascular diseases (CVDs) cause the largest mortality worldwide, and much attention has been focused to unravel the mechanisms and optimize the treatment regimens. Curcumin is an important bioactive component of turmeric that has been widely applied as traditional medicine to prevent and treat various diseases in some countries. Recent studies have demonstrated its potent activities in modulating multiple signaling pathways associated with cellular growth, proliferation, survival, inflammation and oxidative stress. The cardiovascular protective properties of curcumin in CVDs have been fully illustrated in numerous studies. In this review, we first briefly introduce the medicinal history of curcumin. Secondly, we systematically analyze the preclinical studies of curcumin in CVDs such as cardiac hypertrophy, heart failure, drug-induced cardiotoxicity, myocardial infarction, atherosclerosis, abdominal aortic aneurysm, stroke and diabetic cardiovascular complications. The potential molecular targets of curcumin are also summarized. Thirdly, the clinical trials of curcumin in CVDs are overviewed and discussed. Finally, we discuss the therapeutic utility of derivatives of curcumin, and highlight existing problems of curcumin as an effective drug lead in treating CVDs.


Assuntos
Doenças Cardiovasculares , Curcumina , Curcuma , Humanos , Estresse Oxidativo , Especiarias
4.
Fitoterapia ; 139: 104370, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31629872

RESUMO

Ginseng is an ancient herb, belonging to Asian traditional medicine, that has been considered as a restorative to enhance vitality for centuries. It has been demonstrated that the antioxidant action of ginseng may be mediated through activation of different cellular signaling pathways involving the heme oxygenase (HO) system. Several compounds derived from ginseng have been studied for their potential role in brain, heart and liver protection, and the Nrf2 pathway seems to be the most affected by these natural molecules to exert this effect. Ginseng is also popularly used in cancer patients therapy for the demonstrated capability to defend tissues from chemotherapy-induced damage. Reported results suggest that the effect of ginseng is primarily associated with ROS scavenging, mainly exerted through the activation of Nrf2 pathway, and the consequent induction of HO-1 levels. This review aims to discuss the connection between the antioxidant properties of ginseng and the activation of the HO system, as well as to outline novel therapeutic applications of this medicinal plant to human health.


Assuntos
Antioxidantes/farmacologia , Ginsenosídeos/farmacologia , Heme Oxigenase-1/fisiologia , Panax/química , Antineoplásicos Fitogênicos/farmacologia , Cardiotônicos/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/fisiologia , Fármacos Neuroprotetores/farmacologia , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Transdução de Sinais
5.
Pharmacol Res ; 141: 73-84, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30550953

RESUMO

JAK/STAT transduction pathway is a highly conserved pathway implicated in regulating cellular proliferation, differentiation, survival and apoptosis. Dysregulation of this pathway is involved in the onset of autoimmune, haematological, oncological, metabolic and neurological diseases. Over the last few years, the research of anti-neuroinflammatory agents has gained considerable attention. The ability to diminish the STAT-induced transcription of inflammatory genes is documented for both natural compounds (such as polyphenols) and chemical drugs. Among polyphenols, quercetin and curcumin directly inhibit STAT, while Berberis vulgaris L. and Sophora alopecuroides L extracts act indirectly. Also, the Food and Drug Administration has approved several JAK/STAT inhibitors (direct or indirect) for treating inflammatory diseases, indicating STAT can be considered as a therapeutic target for neuroinflammatory pathologies. Considering the encouraging data obtained so far, clinical trials are warranted to demonstrate the effectiveness and potential use in the clinical practice of STAT inhibitors to treat inflammation-associated neurodegenerative pathologies.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Fatores de Transcrição STAT/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação/metabolismo , Doenças do Sistema Nervoso/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Fatores de Transcrição STAT/química , Fatores de Transcrição STAT/metabolismo
6.
Curr Med Chem ; 25(13): 1577-1595, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28618991

RESUMO

BACKGROUND: The aim of this review is to summarize the effects of various naturally occurring polyphenols in the management of metabolic dysfunctions. This cluster of metabolic abnormalities comprises insulin resistance, increased levels of free fatty acids, hypercholesterolemia, obesity, hyperglycemia and hypertension, diabetes mellitus (DM) type 1 (T1DM) and type 2 (T2DM) along with DM-induced complications. Most of them are included in the well-known metabolic syndrome (MS). These metabolic dysfunctions in turn are tightly associated to a high risk of development of cardiovascular diseases. Although molecular mechanisms underlying the onset of metabolic dysfunctions and related complications are not yet clear, it is widely recognized that they are associated to oxidative stress and chronic low-grade of inflammatory levels. METHODS: We undertook a structured search of bibliographic references through the use of SciFinder. The database was provided by a division of ACS (American Chemical Society) and guarantees access to the world's most extensive and authoritative source of references. The search was performed using "heme oxygenase-1" as research topic and a subsequent refinement was done by using inclusion/exclusion criteria. The quality of retrieved papers was evaluated on the basis of standard tools. RESULTS: From a careful review of the selected literature, of interest, the use of natural antioxidant polyphenols seems to be the ideal pharmacological treatment since they are endowed with strong antioxidant and anti-inflammatory properties. In particular, some polyphenols such as curcumin, quercetin, genistein, and caffeic acid phenethyl ester are able to potently activate nuclear factor erythroid 2-related factor 2 (Nrf2) and related downstream expression of enzymes such as heme oxygenase-1 (HO-1). Indeed, an overexpression of HO-1 has been demonstrated to play a beneficial role in metabolic diseases. CONCLUSION: The following review is intended to stimulate interest in the role of natural occurring HO-1 inducers in metabolic dysfunction, focusing on the clinical potential of HO-1 activity to restore the balance between pro-oxidant and anti-oxidants systems.


Assuntos
Antioxidantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Doenças Metabólicas/tratamento farmacológico , Polifenóis/uso terapêutico , Animais , Doenças Cardiovasculares/metabolismo , Indução Enzimática , Humanos , Doenças Metabólicas/metabolismo , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
7.
Oxid Med Cell Longev ; 2017: 1420892, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158871

RESUMO

Oxidative stress is a hallmark of retinal degenerations such as age-related macular degeneration and diabetic retinopathy. Enhancement of heme oxygenase-1 (HO-1) activity in the retina would exert beneficial effects by protecting cells from oxidative stress, therefore promoting cell survival. Because a crosstalk exists between nitric oxide (NO) and HO-1 in promotion of cell survival under oxidative stress, we designed novel NO-releasing molecules also capable to induce HO-1. Starting from curcumin and caffeic acid phenethyl ester (CAPE), two known HO-1 inducers, the molecules were chemically modified by acylation with 4-bromo-butanoyl chloride and 2-chloro-propanoyl chloride, respectively, and then treated in the dark with AgNO3 to obtain the nitrate derivatives VP10/12 and VP10/39. Human retinal pigment epithelial cells (ARPE-19) subjected to H2O2-mediated oxidative stress were treated with the described NO-releasing compounds. VP10/39 showed significant (p < 0.05) antioxidant and protecting activity against oxidative damage, in comparison to VP10/12, which in turn showed at 100 µM concentration a slight but significant cell toxicity. Only VP10/39 significantly (p < 0.05) induced HO-1 in ARPE-19, most likely through covalent bond formation at Cys151 of the Keap1-BTB domain, as revealed from molecular docking analysis. In conclusion, the present data indicate VP10/39 as a promising candidate to protect ARPE-19 cells against oxidative stress.


Assuntos
Óxido Nítrico/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Óxido Nítrico/farmacologia
8.
ScientificWorldJournal ; 2014: 719486, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24683354

RESUMO

Eggplant fruit is a very rich source of polyphenol compounds endowed with antioxidant properties. The aim of this study was to extract polyphenols from eggplant entire fruit, pulp, or skin, both fresh and dry, and compare results between conventional extraction and microwave-assisted extraction (MAE). The effects of time exposure (15, 30, 60, and 90 min) and solvent (water 100% or ethanol/water 50%) were also evaluated. The highest amount of polyphenols was found in the extract obtained from dry peeled skin treated with 50% aqueous ethanol, irradiated with microwave; this extract contained also high quantity of flavonoids and showed good antioxidant activity expressed by its capacity to scavenge superoxide anion and to inhibit lipid peroxidation.


Assuntos
Antioxidantes/farmacologia , Micro-Ondas , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Solanum melongena/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA