Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 129: 323-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268890

RESUMO

We previously demonstrated that co-exposing pre-steatotic hepatocytes to benzo[a]pyrene (B[a]P), a carcinogenic environmental pollutant, and ethanol, favored cell death. Here, the intracellular mechanisms underlying this toxicity were studied. Steatotic WIF-B9 hepatocytes, obtained by a 48h-supplementation with fatty acids, were then exposed to B[a]P/ethanol (10 nM/5 mM, respectively) for 5 days. Nitric oxide (NO) was demonstrated to be a pivotal player in the cell death caused by the co-exposure in steatotic hepatocytes. Indeed, by scavenging NO, CPTIO treatment of co-exposed steatotic cells prevented not only the increase in DNA damage and cell death, but also the decrease in the activity of CYP1, major cytochrome P450s of B[a]P metabolism. This would then lead to an elevation of B[a]P levels, thus possibly suggesting a long-lasting stimulation of the transcription factor AhR. Besides, as NO can react with superoxide anion to produce peroxynitrite, a highly oxidative compound, the use of FeTPPS to inhibit its formation indicated its participation in DNA damage and cell death, further highlighting the important role of NO. Finally, a possible key role for AhR was pointed out by using its antagonist, CH-223191. Indeed it prevented the elevation of ADH activity, known to participate to the ethanol production of ROS, notably superoxide anion. The transcription factor, NFκB, known to be activated by ROS, was shown to be involved in the increase in iNOS expression. Altogether, these data strongly suggested cooperative mechanistic interactions between B[a]P via AhR and ethanol via ROS production, to favor cell death in the context of prior steatosis.


Assuntos
Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Etanol/toxicidade , Ácidos Graxos/farmacologia , Hepatócitos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Compostos Azo/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzoatos/farmacologia , Linhagem Celular Tumoral , Quimera , Citocromo P-450 CYP1A1/antagonistas & inibidores , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Imidazóis/farmacologia , Metaloporfirinas/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Necrose/genética , Necrose/metabolismo , Óxido Nítrico/agonistas , Pirazóis/farmacologia , Ratos , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Superóxidos/agonistas , Superóxidos/antagonistas & inibidores , Superóxidos/metabolismo
2.
Free Radic Biol Med ; 72: 11-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24681337

RESUMO

Several epidemiologic studies have shown an interactive effect of heavy smoking and heavy alcohol drinking on the development of hepatocellular carcinoma. It has also been recently described that chronic hepatocyte death can trigger excessive compensatory proliferation resulting later in the formation of tumors in mouse liver. As we previously demonstrated that both benzo[a]pyrene (B[a]P), an environmental agent found in cigarette smoke, and ethanol possess similar targets, especially oxidative stress, to trigger death of liver cells, we decided to study here the cellular and molecular mechanisms of the effects of B[a]P/ethanol coexposure on cell death. After an 18-h incubation with 100nM B[a]P, primary rat hepatocytes were supplemented with 50mM ethanol for 5 or 8h. B[a]P/ethanol coexposure led to a greater apoptotic cell death that could be linked to an increase in lipid peroxidation. Plasma membrane remodeling, as depicted by membrane fluidity elevation and physicochemical alterations in lipid rafts, appeared to play a key role, because both toxicants acted with specific complementary effects. Membrane remodeling was shown to induce an accumulation of lysosomes leading to an important increase in low-molecular-weight iron cellular content. Finally, ethanol metabolism, but not that of B[a]P, by providing reactive oxygen species, induced the ultimate toxic process. Indeed, in lysosomes, ethanol promoted the Fenton reaction, lipid peroxidation, and membrane permeabilization, thereby triggering cell death. To conclude, B[a]P exposure, by depleting hepatocyte membrane cholesterol content, would constitute a favorable ground for a later toxic insult such as ethanol intoxication. Membrane stabilization of both plasma membrane and lysosomes might be a potential target for further investigation considering cytoprotective strategies.


Assuntos
Benzo(a)pireno/toxicidade , Membrana Celular/efeitos dos fármacos , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Depressores do Sistema Nervoso Central/toxicidade , Hepatócitos/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley
3.
Food Chem Toxicol ; 60: 286-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907024

RESUMO

Previously, we demonstrated that eicosapentaenoic acid enhanced ethanol-induced oxidative stress and cell death in primary rat hepatocytes via an increase in membrane fluidity and lipid raft clustering. In this context, another n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), was tested with a special emphasis on physical and chemical alteration of lipid rafts. Pretreatment of hepatocytes with DHA reduced significantly ethanol-induced oxidative stress and cell death. DHA protection could be related to an alteration of lipid rafts. Indeed, rafts exhibited a marked increase in membrane fluidity and packing defects leading to the exclusion of a raft protein marker, flotillin. Furthermore, DHA strongly inhibited disulfide bridge formation, even in control cells, thus suggesting a disruption of protein-protein interactions inside lipid rafts. This particular spatial organization of lipid rafts due to DHA subsequently prevented the ethanol-induced lipid raft clustering. Such a prevention was then responsible for the inhibition of phospholipase C-γ translocation into rafts, and consequently of both lysosome accumulation and elevation in cellular low-molecular-weight iron content, a prooxidant factor. In total, the present study suggests that DHA supplementation could represent a new preventive approach for patients with alcoholic liver disease based upon modulation of the membrane structures.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA