Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R100-R111, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132115

RESUMO

Hyperbaric oxygen (HBO2) is breathing >1 atmosphere absolute (ATA; 101.3 kPa) O2 and is used in HBO2 therapy and undersea medicine. What limits the use of HBO2 is the risk of developing central nervous system (CNS) oxygen toxicity (CNS-OT). A promising therapy for delaying CNS-OT is ketone metabolic therapy either through diet or exogenous ketone ester (KE) supplement. Previous studies indicate that KE induces ketosis and delays the onset of CNS-OT; however, the effects of exogeneous KE on cognition and performance are understudied. Accordingly, we tested the hypothesis that oral gavage with 7.5 g/kg induces ketosis and increases the latency time to seizure (LSz) without impairing cognition and performance. A single oral dose of 7.5 g/kg KE increases systemic ß-hydroxybutyrate (BHB) levels within 0.5 h and remains elevated for 4 h. Male rats were separated into three groups: control (no gavage), water-gavage, or KE-gavage, and were subjected to behavioral testing while breathing 1 ATA (101.3 kPa) of air. Testing included the following: DigiGait (DG), light/dark (LD), open field (OF), and novel object recognition (NOR). There were no adverse effects of KE on gait or motor performance (DG), cognition (NOR), and anxiety (LD, OF). In fact, KE had an anxiolytic effect (OF, LD). The LSz during exposure to 5 ATA (506.6 kPa) O2 (≤90 min) increased 307% in KE-treated rats compared with control rats. In addition, KE prevented seizures in some animals. We conclude that 7.5 g/kg is an optimal dose of KE in the male Sprague-Dawley rat model of CNS-OT.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ésteres/farmacologia , Cetonas/farmacologia , Atividade Motora/efeitos dos fármacos , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidade , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ésteres/farmacocinética , Ésteres/toxicidade , Oxigenoterapia Hiperbárica/efeitos adversos , Cetonas/farmacocinética , Cetonas/toxicidade , Masculino , Ratos Sprague-Dawley , Tempo de Reação , Convulsões/etiologia , Convulsões/fisiopatologia , Convulsões/psicologia
2.
Obesity (Silver Spring) ; 28(8): 1447-1455, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32618116

RESUMO

OBJECTIVE: The aim of this study was to examine the effects of a ketone ester (KE)-supplemented diet on energy expenditure (EE) and adiposity in mice housed at 23 °C versus thermoneutrality (30 °C), in which sympathetic nervous system activity is diminished. METHODS: Thirty-two 10-week-old male C57BL/6J mice were assigned to 1 of 4 groups (n = 8 per group): 30% KE diet + 23 °C (KE23), control (CON) diet + 23 °C (CON23), 30% KE diet + 30 °C (KE30), or CON diet + 30 °C (CON30). CON mice were pair-fed to the average intake of mice consuming the KE diet (ad libitum) for 8 weeks. Body composition and components of energy balance were measured at completion of the study. RESULTS: CON23 (mean ± SD, 26.0 ± 1.6 g) and CON30 (29.7 ± 1.4 g) mice weighed more than KE groups (P < 0.03 for both) and were also different from each other (CON23 vs. CON30, P < 0.01). However, KE23 (23.4 ± 2.7 g) and KE30 (23.1 ± 1.9 g) mice were not different in body weight. As expected, food intake at 30 °C (2.0 ± 0.3 g/d) was lower than at 23 °C (2.6 ± 0.3 g/d, P < 0.01). Diet did not influence resting and total EE, but mice housed at 30 °C had lower EE compared with mice at 23 °C (P < 0.01). CONCLUSIONS: Dietary KEs attenuate body weight gain at standard (23 °C) and thermoneutral (30 °C) housing temperatures, and this effect is not mediated by increased EE under these conditions.


Assuntos
Adiposidade/fisiologia , Peso Corporal/efeitos dos fármacos , Ésteres/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Camundongos
3.
Curr Sports Med Rep ; 19(7): 251-259, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32692060

RESUMO

Athletes, clinicians, and practitioners are increasingly interested in the proposed performance and therapeutic benefits of nutritional ketosis (NK). NK is best operationally defined as a nutritionally induced metabolic state resulting in blood ß-hydroxybutyrate concentrations of ≥0.5 mM. Most tissues readily metabolize ketone bodies (KBs), and KBs in turn regulate metabolism and signaling in both a systemic and tissue-specific manner. During fasting, starvation, or ketogenic diets, endogenous synthesis of KBs is amplified resulting in a state of NK. Orally administered exogenous ketone supplements rapidly elevate circulating KBs and produce a similar, but far from identical, metabolic state. NK results in a number of convergent features regardless of endogenous or exogenous induction; however, important differences also are observed. The implications of NK across health, disease, and performance is rapidly becoming more evident, thus acknowledging the convergent and divergent features of NK is critical for fully understanding the potential utility of this metabolic state.


Assuntos
Desempenho Atlético/fisiologia , Dieta Cetogênica , Suplementos Nutricionais , Corpos Cetônicos/metabolismo , Cetose/metabolismo , Humanos
4.
Front Mol Neurosci ; 9: 137, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27999529

RESUMO

Nutritional ketosis has been proven effective for seizure disorders and other neurological disorders. The focus of this study was to determine the effects of ketone supplementation on anxiety-related behavior in Sprague-Dawley (SPD) and Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. We tested exogenous ketone supplements added to food and fed chronically for 83 days in SPD rats and administered sub-chronically for 7 days in both rat models by daily intragastric gavage bolus followed by assessment of anxiety measures on elevated plus maze (EPM). The groups included standard diet (SD) or SD + ketone supplementation. Low-dose ketone ester (LKE; 1,3-butanediol-acetoacetate diester, ~10 g/kg/day, LKE), high dose ketone ester (HKE; ~25 g/kg/day, HKE), beta-hydroxybutyrate-mineral salt (ßHB-S; ~25 g/kg/day, KS) and ßHB-S + medium chain triglyceride (MCT; ~25 g/kg/day, KSMCT) were used as ketone supplementation for chronic administration. To extend our results, exogenous ketone supplements were also tested sub-chronically on SPD rats (KE, KS and KSMCT; 5 g/kg/day) and on WAG/Rij rats (KE, KS and KSMCT; 2.5 g/kg/day). At the end of treatments behavioral data collection was conducted manually by a blinded observer and with a video-tracking system, after which blood ßHB and glucose levels were measured. Ketone supplementation reduced anxiety on EPM as measured by less entries to closed arms (sub-chronic KE and KS: SPD rats and KSMCT: WAG/Rij rats), more time spent in open arms (sub-chronic KE: SPD and KSMCT: WAG/Rij rats; chronic KSMCT: SPD rats), more distance traveled in open arms (chronic KS and KSMCT: SPD rats) and by delayed latency to entrance to closed arms (chronic KSMCT: SPD rats), when compared to control. Our data indicates that chronic and sub-chronic ketone supplementation not only elevated blood ßHB levels in both animal models, but reduced anxiety-related behavior. We conclude that ketone supplementation may represent a promising anxiolytic strategy through a novel means of inducing nutritional ketosis.

5.
Nutr Metab (Lond) ; 13: 9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855664

RESUMO

BACKGROUND: Nutritional ketosis induced by the ketogenic diet (KD) has therapeutic applications for many disease states. We hypothesized that oral administration of exogenous ketone supplements could produce sustained nutritional ketosis (>0.5 mM) without carbohydrate restriction. METHODS: We tested the effects of 28-day administration of five ketone supplements on blood glucose, ketones, and lipids in male Sprague-Dawley rats. The supplements included: 1,3-butanediol (BD), a sodium/potassium ß-hydroxybutyrate (ßHB) mineral salt (BMS), medium chain triglyceride oil (MCT), BMS + MCT 1:1 mixture, and 1,3 butanediol acetoacetate diester (KE). Rats received a daily 5-10 g/kg dose of their respective ketone supplement via intragastric gavage during treatment. Weekly whole blood samples were taken for analysis of glucose and ßHB at baseline and, 0.5, 1, 4, 8, and 12 h post-gavage, or until ßHB returned to baseline. At 28 days, triglycerides, total cholesterol and high-density lipoprotein (HDL) were measured. RESULTS: Exogenous ketone supplementation caused a rapid and sustained elevation of ßHB, reduction of glucose, and little change to lipid biomarkers compared to control animals. CONCLUSIONS: This study demonstrates the efficacy and tolerability of oral exogenous ketone supplementation in inducing nutritional ketosis independent of dietary restriction.

6.
Compr Physiol ; 7(1): 213-234, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-28135004

RESUMO

The elevation of tissue pO2 induced by hyperbaric oxygen (HBO) is a physiological stimulus that elicits a variety of cellular responses. These effects are largely mediated by, or in response to, an increase in the production of reactive oxygen and nitrogen species (RONS). The major consequences of elevated RONS include increased oxidative stress and enhanced antioxidant capacity, and modulation of redox-sensitive cell signaling pathways. Interestingly, these phenomena underlie both the therapeutic and potentially toxic effects of HBO. Emerging evidence indicates that supporting mitochondrial health is a potential method of enhancing the therapeutic efficacy of, and preventing oxygen toxicity during, HBO. This review will focus on the cellular consequences of HBO, and explore how these processes mediate a delicate balance of cellular protection versus damage. © 2017 American Physiological Society. Compr Physiol 7:213-234, 2017.


Assuntos
Oxigenoterapia Hiperbárica , Animais , Morte Celular , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Oxigênio/toxicidade
7.
Cancer Lett ; 356(2 Pt A): 289-300, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25069036

RESUMO

Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Citomegalovirus , Dieta Cetogênica/métodos , Metabolismo Energético/fisiologia , Glioblastoma/metabolismo , Glioblastoma/terapia , Neoplasias Encefálicas/virologia , Dieta , Glioblastoma/virologia , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/fisiologia , Humanos , Macrófagos/patologia , Microglia/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Resultado do Tratamento , Microambiente Tumoral
8.
PLoS One ; 9(7): e103526, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061944

RESUMO

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity. The Deanna Protocol (DP) is a metabolic therapy that has been reported to alleviate symptoms in patients with ALS. In this study we hypothesized that alternative fuels in the form of TCA cycle intermediates, specifically arginine-alpha-ketoglutarate (AAKG), the main ingredient of the DP, and the ketogenic diet (KD), would increase motor function and survival in a mouse model of ALS (SOD1-G93A). ALS mice were fed standard rodent diet (SD), KD, or either diets containing a metabolic therapy of the primary ingredients of the DP consisting of AAKG, gamma-aminobutyric acid, Coenzyme Q10, and medium chain triglyceride high in caprylic triglyceride. Assessment of ALS-like pathology was performed using a pre-defined criteria for neurological score, accelerated rotarod test, paw grip endurance test, and grip strength test. Blood glucose, blood beta-hydroxybutyrate, and body weight were also monitored. SD+DP-fed mice exhibited improved neurological score from age 116 to 136 days compared to control mice. KD-fed mice exhibited better motor performance on all motor function tests at 15 and 16 weeks of age compared to controls. SD+DP and KD+DP therapies significantly extended survival time of SOD1-G93A mice by 7.5% (p = 0.001) and 4.2% (p = 0.006), respectively. Sixty-three percent of mice in the KD+DP and 72.7% of the SD+DP group lived past 125 days, while only 9% of the control animals survived past that point. Targeting energy metabolism with metabolic therapy produces a therapeutic effect in ALS mice which may prolong survival and quality of life in ALS patients.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Arginina/análogos & derivados , Caprilatos/uso terapêutico , Ácidos Cetoglutáricos/uso terapêutico , Ubiquinona/análogos & derivados , Ácido gama-Aminobutírico/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Animais , Arginina/administração & dosagem , Arginina/uso terapêutico , Caprilatos/administração & dosagem , Suplementos Nutricionais , Ácidos Cetoglutáricos/administração & dosagem , Masculino , Camundongos , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Ubiquinona/administração & dosagem , Ubiquinona/uso terapêutico , Ácido gama-Aminobutírico/administração & dosagem
9.
PLoS One ; 8(6): e65522, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755243

RESUMO

INTRODUCTION: Abnormal cancer metabolism creates a glycolytic-dependency which can be exploited by lowering glucose availability to the tumor. The ketogenic diet (KD) is a low carbohydrate, high fat diet which decreases blood glucose and elevates blood ketones and has been shown to slow cancer progression in animals and humans. Abnormal tumor vasculature creates hypoxic pockets which promote cancer progression and further increase the glycolytic-dependency of cancers. Hyperbaric oxygen therapy (HBO2T) saturates tumors with oxygen, reversing the cancer promoting effects of tumor hypoxia. Since these non-toxic therapies exploit overlapping metabolic deficiencies of cancer, we tested their combined effects on cancer progression in a natural model of metastatic disease. METHODS: We used the firefly luciferase-tagged VM-M3 mouse model of metastatic cancer to compare tumor progression and survival in mice fed standard or KD ad libitum with or without HBO2T (2.5 ATM absolute, 90 min, 3x/week). Tumor growth was monitored by in vivo bioluminescent imaging. RESULTS: KD alone significantly decreased blood glucose, slowed tumor growth, and increased mean survival time by 56.7% in mice with systemic metastatic cancer. While HBO2T alone did not influence cancer progression, combining the KD with HBO2T elicited a significant decrease in blood glucose, tumor growth rate, and 77.9% increase in mean survival time compared to controls. CONCLUSIONS: KD and HBO2T produce significant anti-cancer effects when combined in a natural model of systemic metastatic cancer. Our evidence suggests that these therapies should be further investigated as potential non-toxic treatments or adjuvant therapies to standard care for patients with systemic metastatic disease.


Assuntos
Dieta Cetogênica , Oxigenoterapia Hiperbárica , Ácido 3-Hidroxibutírico/sangue , Animais , Glicemia , Linhagem Celular Tumoral , Terapia Combinada , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias Experimentais/sangue , Neoplasias Experimentais/secundário , Neoplasias Experimentais/terapia , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA