Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 13(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836178

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is a rare progressive and lethal disease affecting pulmonary arteries and heart function. The disease may compromise the nutritional status of the patient, which impairs their physical performance. This study aimed to determine the prevalence of micronutrient deficiencies in pulmonary arterial hypertension (PAH) and chronic thrombo-embolic pulmonary hypertension (CTEPH) patients. METHODS: Eighty-one blood samples from a prospective observational cohort study were analyzed for concentrations of micronutrients and inflammation-related factors. The samples consisted of newly diagnosed (treatment-naive) PAH and CTEPH patients and patients treated for 1.5 years according to ERS/ESC guidelines. RESULTS: In the newly diagnosed group, 42% of PAH patients and 21% of CTEPH patients were iron deficient compared to 29% of PAH patients and 20% of CTEPH patients in the treatment group. Vitamin D deficiency occurred in 42% of the newly diagnosed PAH patients, 71% of the newly diagnosed CTEPH patients, 68% of the treated PAH patients, and 70% of the treated CTEPH patients. Iron levels correlated with the 6 min walking distance (6MWD). CONCLUSIONS: Iron and vitamin D deficiencies are highly prevalent in PAH and CTEPH patients, underlining the need for monitoring their status. Studies evaluating the effects of supplementation strategies for iron and vitamin D are necessary.


Assuntos
Hipertensão Pulmonar/epidemiologia , Micronutrientes/deficiência , Estado Nutricional , Hipertensão Arterial Pulmonar/epidemiologia , Idoso , Doença Crônica/epidemiologia , Estudos de Coortes , Feminino , Humanos , Deficiências de Ferro/epidemiologia , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados da Assistência ao Paciente , Prevalência , Estudos Prospectivos , Deficiência de Vitamina D/epidemiologia
2.
Int J Mol Sci ; 20(20)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600911

RESUMO

BACKGROUND: Dietary supplementation with leucine and fish oil rich in omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) has previously been shown to reduce cachexia-related outcomes in C26 tumour-bearing mice. To further explore associated processes and mechanisms we investigated changes in plasma Ca2+ levels, the involvement of parathyroid hormone related protein (PTHrP), and its possible interactions with cyclooxygenase 2 (COX-2). METHODS: CD2F1 mice were subcutaneously inoculated with C26 adenocarcinoma cells or sham treated and divided in: (1) controls, (2) tumour-bearing controls, and (3) tumour-bearing receiving experimental diets. After 20 days, body and organ masses and total plasma Ca2+ levels were determined. Furthermore, effects of DHA, EPA and leucine on production of PTHrP were studied in cultured C26 cells. RESULTS: The combination of leucine and fish oil reduced tumour-associated hypercalcemia. Plasma Ca2+ levels negatively correlated with carcass mass and multiple organ masses. DHA was able to reduce PTHrP production by C26 cells in vitro. Results indicate that this effect occurred independently of COX-2 inhibition. CONCLUSION: Our results suggest that cancer-related hypercalcemia may be ameliorated by a nutritional intervention rich in leucine and fish oil. The effect of fish oil possibly relates to a DHA-induced reduction of PTHrP excretion by the tumour.


Assuntos
Caquexia/etiologia , Dieta , Óleos de Peixe/farmacologia , Hipercalcemia/metabolismo , Leucina/farmacologia , Neoplasias/complicações , Animais , Caquexia/metabolismo , Caquexia/patologia , Cálcio/metabolismo , Dinoprostona/sangue , Dinoprostona/metabolismo , Modelos Animais de Doenças , Hipercalcemia/tratamento farmacológico , Hipercalcemia/etiologia , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/sangue , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo
3.
Biochim Biophys Acta ; 1861(12 Pt A): 2020-2028, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663185

RESUMO

Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong anti-inflammatory properties. Previously, we identified the serotonin conjugate of DHA, docosahexaenoyl serotonin (DHA-5-HT), in intestinal tissues and showed that its levels are markedly influenced by intake of n-3 PUFAs. However, its biological roles remain to be elucidated. Here, we show that DHA-5-HT possesses potent anti-inflammatory properties by attenuating the IL-23-IL-17 signaling cascade in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Transcriptome analysis revealed that DHA-5-HT down-regulates LPS-induced genes, particularly those involved in generating a CD4+ Th17 response. Hence, levels of PGE2, IL-6, IL-1ß, and IL-23, all pivotal macrophage-produced mediators driving the activation of pathogenic Th17 cells in a concerted way, were found to be significantly suppressed by concentrations as low as 100-500nM DHA-5-HT. Furthermore, DHA-5-HT inhibited the ability of RAW264.7 cells to migrate and downregulated chemokines like MCP-1, CCL-20, and gene-expression of CCL-22 and of several metalloproteinases. Gene set enrichment analysis (GSEA) suggested negative overlap with gene sets linked to inflammatory bowel disease (IBD) and positive overlap with gene sets related to the Nrf2 pathway. The specific formation of DHA-5-HT in the gut, combined with increasing data underlining the importance of the IL-23-IL-17 signaling pathway in the etiology of many chronic inflammatory diseases merits further investigation into its potential as therapeutic compound in e.g. IBD or intestinal tumorigenesis.


Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Serotonina/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Ácido Eicosapentaenoico/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
4.
Br J Nutr ; 105(12): 1798-807, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21294934

RESUMO

Several mechanisms have been proposed for the positive health effects associated with dietary consumption of long-chain n-3 PUFA (n-3 LC-PUFA) including DHA (22 : 6n-3) and EPA (20 : 5n-3). After dietary intake, LC-PUFA are incorporated into membranes and can be converted to their corresponding N-acylethanolamines (NAE). However, little is known on the biological role of these metabolites. In the present study, we tested a series of unsaturated NAE on the lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Among the compounds tested, docosahexaenoylethanolamine (DHEA), the ethanolamide of DHA, was found to be the most potent inhibitor, inducing a dose-dependent inhibition of NO release. Immune-modulating properties of DHEA were further studied in the same cell line, demonstrating that DHEA significantly suppressed the production of monocyte chemotactic protein-1 (MCP-1), a cytokine playing a pivotal role in chronic inflammation. In LPS-stimulated mouse peritoneal macrophages, DHEA also reduced MCP-1 and NO production. Furthermore, inhibition was also found to take place at a transcriptional level, as gene expression of MCP-1 and inducible NO synthase was inhibited by DHEA. To summarise, in the present study, we showed that DHEA, a DHA-derived NAE metabolite, modulates inflammation by reducing MCP-1 and NO production and expression. These results provide new leads in molecular mechanisms by which DHA can modulate inflammatory processes.


Assuntos
Quimiocina CCL2/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Óleos de Peixe/uso terapêutico , Imunomodulação/efeitos dos fármacos , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase/metabolismo , Análise de Variância , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA