Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092755

RESUMO

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Clorpromazina/farmacologia , Clorpromazina/uso terapêutico , Piruvato Quinase/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético
2.
Biofouling ; 30(3): 299-311, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552245

RESUMO

The microbial risk for the conservation of seven sixteenth century parchment manuscripts, which showed brown discolouration putatively caused by microorganisms, was evaluated using non-invasive sampling techniques, microscopy, studies of surface-associated and airborne microflora with culture-independent molecular methods, and by measuring repository thermo-hygrometric values. Microscopic observations and ATP assays demonstrated a low level of contamination, indicating that the discolouration was not related to currently active microbial colonisation. Nevertheless, a culture-independent molecular approach was adopted to fully characterise surface-associated communities searching for biodeteriogens that could grow under appropriate thermo-hygrometric conditions. Indeed, potential biodeteriogens and microorganisms that are ecologically related to humans were found, suggesting the need to control the conservation environment and improve handling procedures. Microbial loads of air and thermo-hygrometric measurements showed that the repository was not suitable for preventing the microbial deterioration of parchment. A holistic approach to the assessment of risk of microbial deterioration of documents and heritage preservation is proposed for the first time.


Assuntos
Microbiologia do Ar , Manuscritos como Assunto , Monitoramento Ambiental , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA