Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 79: 118-129, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499856

RESUMO

Cyanobacteria are attracting increasing attention as a photosynthetic chassis organism for diverse biochemical production, however, photoautotrophic production remains inefficient. Photomixotrophy, a method where sugar is used to supplement baseline autotrophic metabolism in photosynthetic hosts, is becoming increasingly popular for enhancing sustainable bioproduction with multiple input energy streams. In this study, the commercially relevant diacid, succinate, was produced photomixotrophically. Succinate is an important industrial chemical that can be used for the production of a wide array of products, from pharmaceuticals to biopolymers. In this system, the substrate, glucose, is transported by a proton symporter and the product, succinate, is hypothesized to be transported by another proton symporter, but in the opposite direction. Thus, low pH is required for the import of glucose and high pH is required for the export of succinate. Succinate production was initiated in a pH 7 medium containing bicarbonate. Glucose was efficiently imported at around neutral pH. Utilization of bicarbonate by CO2 fixation raised the pH of the medium. As succinate, a diacid, was produced, the pH of the medium dropped. By repeating this cycle with additional pH adjustment, those contradictory requirements for transport were overcome. pH affects a variety of biological factors and by cycling from high pH to neutral pH processes such as CO2 fixation rates and CO2 solubility can vary. In this study the engineered strains produced succinate during fluctuating pH conditions, achieving a titer of 5.0 g L-1 after 10 days under shake flask conditions. These results demonstrate the potential for photomixotrophic production as a viable option for the large-scale production of succinate.


Assuntos
Ácido Succínico , Simportadores , Ácido Succínico/metabolismo , Dióxido de Carbono/metabolismo , Prótons , Bicarbonatos/metabolismo , Engenharia Metabólica/métodos , Succinatos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio
2.
Mar Pollut Bull ; 85(1): 8-23, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24997002

RESUMO

Over 1.3 billion people live on tropical coasts, primarily in developing countries. Many depend on adjacent coastal seas for food, and livelihoods. We show how trends in demography and in several local and global anthropogenic stressors are progressively degrading capacity of coastal waters to sustain these people. Far more effective approaches to environmental management are needed if the loss in provision of ecosystem goods and services is to be stemmed. We propose expanded use of marine spatial planning as a framework for more effective, pragmatic management based on ocean zones to accommodate conflicting uses. This would force the holistic, regional-scale reconciliation of food security, livelihoods, and conservation that is needed. Transforming how countries manage coastal resources will require major change in policy and politics, implemented with sufficient flexibility to accommodate societal variations. Achieving this change is a major challenge - one that affects the lives of one fifth of humanity.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Animais , Antozoários , Simulação por Computador , Demografia , Ecologia , Monitoramento Ambiental/métodos , Pesqueiros , Geografia , Humanos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA