Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Microbiol ; 3(11): 1274-1284, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356154

RESUMO

Because of their agricultural value, there is a great body of research dedicated to understanding the microorganisms responsible for rumen carbon degradation. However, we lack a holistic view of the microbial food web responsible for carbon processing in this ecosystem. Here, we sampled rumen-fistulated moose, allowing access to rumen microbial communities actively degrading woody plant biomass in real time. We resolved 1,193 viral contigs and 77 unique, near-complete microbial metagenome-assembled genomes, many of which lacked previous metabolic insights. Plant-derived metabolites were measured with NMR and carbohydrate microarrays to quantify the carbon nutrient landscape. Network analyses directly linked measured metabolites to expressed proteins from these unique metagenome-assembled genomes, revealing a genome-resolved three-tiered carbohydrate-fuelled trophic system. This provided a glimpse into microbial specialization into functional guilds defined by specific metabolites. To validate our proteomic inferences, the catalytic activity of a polysaccharide utilization locus from a highly connected metabolic hub genome was confirmed using heterologous gene expression. Viral detected proteins and linkages to microbial hosts demonstrated that phage are active controllers of rumen ecosystem function. Our findings elucidate the microbial and viral members, as well as their metabolic interdependencies, that support in situ carbon degradation in the rumen ecosystem.


Assuntos
Carbono/metabolismo , Consórcios Microbianos , Rúmen , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos , Redes e Vias Metabólicas , Metagenômica , Filogenia , Proteômica , Rúmen/metabolismo , Rúmen/microbiologia , Rúmen/virologia , Ruminantes , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Vírus/metabolismo , Madeira/metabolismo
2.
Environ Microbiol ; 19(7): 2701-2714, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28447389

RESUMO

Fibrobacter succinogenes is an anaerobic bacterium naturally colonising the rumen and cecum of herbivores where it utilizes an enigmatic mechanism to deconstruct cellulose into cellobiose and glucose, which serve as carbon sources for growth. Here, we illustrate that outer membrane vesicles (OMVs) released by F. succinogenes are enriched with carbohydrate-active enzymes and that intact OMVs were able to depolymerize a broad range of linear and branched hemicelluloses and pectin, despite the inability of F. succinogenes to utilize non-cellulosic (pentose) sugars for growth. We hypothesize that the degradative versatility of F. succinogenes OMVs is used to prime hydrolysis by destabilising the tight networks of polysaccharides intertwining cellulose in the plant cell wall, thus increasing accessibility of the target substrate for the host cell. This is supported by observations that OMV-pretreatment of the natural complex substrate switchgrass increased the catalytic efficiency of a commercial cellulose-degrading enzyme cocktail by 2.4-fold. We also show that the OMVs contain a putative multiprotein complex, including the fibro-slime protein previously found to be important in binding to crystalline cellulose. We hypothesize that this complex has a function in plant cell wall degradation, either by catalysing polysaccharide degradation itself, or by targeting the vesicles to plant biomass.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Parede Celular/metabolismo , Celulose/metabolismo , Vesículas Extracelulares/enzimologia , Fibrobacter/enzimologia , Polissacarídeos/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Fibrobacter/metabolismo , Glucose/metabolismo , Hidrólise , Pectinas/metabolismo , Células Vegetais/metabolismo , Plantas/microbiologia , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA