Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Oral Maxillofac Implants ; 36(3): 520-528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34115066

RESUMO

PURPOSE: To assess the effects of grade IV titanium ultrasonic tip instrumentation on different grade IV titanium implant surfaces and compare the decontamination of different implant surfaces using chlorhexidine, blue laser, or ozone. MATERIALS AND METHODS: Profilometry and energy-dispersive x-ray spectroscopy (EDS) analyses were performed on smooth, laser-micropatterned, and sandblasted grade IV titanium sample disks before (t0) and after (t1) ultrasonic instrumentation with an ultrasonic grade IV titanium tip. Samples were also incubated with a Streptococcus sanguinis culture. Each surface type was then treated with chlorhexidine, blue laser, or ozone (three test groups + control group). Scanning electron microscopy (SEM) images were taken after bacterial growth and after decontamination. RESULTS: After ultrasonic instrumentation, surface roughness (Ra) decreased on sandblasted and micropatterned surfaces, whereas it remained substantially unvaried on the smooth surface. SEM images revealed that the laser-micropatterned structure remained substantially unvaried after instrumentation. EDS revealed a minimal quantity of carbon and iron, found in the laser-treated and sandblasted group at t0. A minimal quantity of aluminum and oxygen was found on the sandblasted surface at t0 and t1. Ozone therapy achieved the highest decontaminating effect, regardless of implant surface topography. CONCLUSION: Among the alternative therapies to ultrasonic instrumentation with titanium tips, ozone appears to be effective regardless of the type of implant surface; it can be used for the decontamination treatment of implants without altering the surface structure.


Assuntos
Implantes Dentários , Raspagem Dentária , Microscopia Eletrônica de Varredura , Análise Espectral , Propriedades de Superfície , Titânio , Ultrassom , Raios X
2.
NPJ Biofilms Microbiomes ; 5(1): 29, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602310

RESUMO

Resolution of bacterial infections is often hampered by both resistance to conventional antibiotic therapy and hiding of bacterial cells inside biofilms, warranting the development of innovative therapeutic strategies. Here, we report the efficacy of blue laser light in eradicating Pseudomonas aeruginosa cells, grown in planktonic state, agar plates and mature biofilms, both in vitro and in vivo, with minimal toxicity to mammalian cells and tissues. Results obtained using knock-out mutants point to oxidative stress as a relevant mechanism by which blue laser light exerts its anti-microbial effect. Finally, the therapeutic potential is confirmed in a mouse model of skin wound infection. Collectively, these data set blue laser phototherapy as an innovative approach to inhibit bacterial growth and biofilm formation, and thus as a realistic treatment option for superinfected wounds.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Lasers , Luz , Estresse Oxidativo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos da radiação , Animais , Linhagem Celular , Meios de Cultura , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Infecções por Pseudomonas/terapia , Radioterapia/métodos , Resultado do Tratamento , Infecção dos Ferimentos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA