Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808079

RESUMO

Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.


Assuntos
Suplementos Nutricionais , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Mialgia/dietoterapia , Spirulina , Adulto , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Oxirredução , Adulto Jovem
2.
J Int Soc Sports Nutr ; 18(1): 23, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726784

RESUMO

BACKGROUND: Soccer-specific speed-endurance training induces short-term neuromuscular fatigue and performance deterioration over a 72-h recovery period, associated with elevated markers of exercise-induced muscle damage. We compared the effects of whey vs. soy protein supplementation on field activity, performance, muscle damage and redox responses following speed-endurance training in soccer players. METHODS: Ten well-trained, male soccer players completed three speed-endurance training trials, receiving whey protein (WP), soy protein (SP) or an isoenergetic placebo (PL; maltodextrin) according to a randomized, double-blind, crossover, repeated-measures design. A pre-loading period was applied in each trial during which protein supplementation was individually adjusted to reach a total protein intake of 1.5 g/kg/day, whereas in PL protein intake was adjusted at 0.8-1 g/kg/day. Following pre-loading, two speed-endurance training sessions (1 and 2) were performed 1 day apart, over a 3-day experimental period. During each session, field activity and heart rate were continuously monitored using global positioning system and heart rate monitors, respectively. Performance (isokinetic strength of knee extensors and flexors, maximal voluntary isometric contraction, speed, repeated sprint ability, countermovement jump), muscle damage (delayed-onset of muscle soreness, creatine kinase activity) and redox status (glutathione, total antioxidant capacity, protein carbonyls) were evaluated at baseline (pre), following pre-loading (post-load), and during recovery from speed-endurance training. RESULTS: High-intensity and high-speed running decreased (P ≤ 0.05) during speed-endurance training in all trials, but WP and SP mitigated this response. Isokinetic strength, maximal voluntary isometric contraction, 30-m speed, repeated sprint ability and countermovement jump performance were similarly deteriorated during recovery following speed-endurance training in all trials (P ≤ 0.05). 10 m speed was impaired at 24 h only in PL. Delayed-onset of muscle soreness, creatine kinase, total antioxidant capacity and protein carbonyls increased and glutathione decreased equally among trials following speed-endurance training (P ≤ 0.05), with SP inducing a faster recovery of protein carbonyls only at 48 h (P ≤ 0.05) compared to WP and PL. CONCLUSIONS: In conclusion, increasing daily protein intake to 1.5 g/kg through ingestion of either whey or soy protein supplements mitigates field performance deterioration during successive speed-endurance training sessions without affecting exercise-induced muscle damage and redox status markers. TRIAL REGISTRATION: Name of the registry: clinicaltrials.gov. TRIAL REGISTRATION: NCT03753321 . Date of registration: 12/10/2018.


Assuntos
Desempenho Atlético/fisiologia , Suplementos Nutricionais , Treino Aeróbico , Mialgia/prevenção & controle , Futebol/fisiologia , Proteínas de Soja/administração & dosagem , Proteínas do Soro do Leite/administração & dosagem , Antioxidantes/metabolismo , Comportamento Competitivo/fisiologia , Creatina Quinase/sangue , Estudos Cross-Over , Método Duplo-Cego , Glutationa/sangue , Humanos , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Oxirredução , Carbonilação Proteica , Adulto Jovem
3.
J Sports Sci Med ; 18(3): 523-536, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427875

RESUMO

Protein supplementation is a major nutritional practice among professional and amateur team-sport athletes representing a market of $5 billion in the USA alone. This practice, however, may not be supported by evidence-based science. Our objective as to present a thorough review of literature investigating the effects of protein supplementation on performance recovery and exercise-induced muscle damage following team-sport activity. PubMed-derived, full English language articles investigating the effects of protein-based supplementation/feeding on skeletal muscle performance, muscle damage and inflammatory status during recovery following team-sport activity were included. Studies investigated professional or amateur team-sport athletes participating in regular training and competition as well as examining the impact of protein supplementation on performance, muscle damage/soreness and inflammatory markers after team-sport activity. Finally, ten articles (150 participants) met the inclusion criteria. Experimental designs were evaluated for confounders. All protocols employing team-sport activity increased systemic muscle damage indicators and inflammatory markers and deteriorated performance during recovery. Protein-based supplementation attenuated the rise in muscle damage markers and enhanced performance recovery in six (60% of the studies included) and three (30% of the studies included) out of 10 studies, respectively. In contrast, immunity and muscle soreness remained unaffected by protein ingestion, independent of dosage and distribution pattern. In conclusion, there are limited and inconsistent data showing that protein supplementation may enhance performance recovery following team-sport activity despite an attenuation of indirect markers of muscle damage. Interpretation of results is limited by small sample sizes, high variability in tested supplements, participants' training level, length of recovery periods, absence of direct measurement of myofibrillar disruption, protein turnover and protein metabolism, and lack of dietary monitoring during experimentation.


Assuntos
Desempenho Atlético/fisiologia , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Mialgia/prevenção & controle , Esportes/fisiologia , Comportamento Competitivo/fisiologia , Exercício Físico/fisiologia , Humanos , Inflamação/prevenção & controle , Condicionamento Físico Humano
4.
Nutrients ; 10(4)2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659539

RESUMO

The effects of protein supplementation on performance recovery and inflammatory responses during a simulated one-week in-season microcycle with two games (G1, G2) performed three days apart were examined. Twenty football players participated in two trials, receiving either milk protein concentrate (1.15 and 0.26 g/kg on game and training days, respectively) (PRO) or an energy-matched placebo (1.37 and 0.31 g/kg of carbohydrate on game and training days, respectively) (PLA) according to a randomized, repeated-measures, crossover, double-blind design. Each trial included two games and four daily practices. Speed, jump height, isokinetic peak torque, and muscle soreness of knee flexors (KF) and extensors (KE) were measured before G1 and daily thereafter for six days. Blood was drawn before G1 and daily thereafter. Football-specific locomotor activity and heart rate were monitored using GPS technology during games and practices. The two games resulted in reduced speed (by 3-17%), strength of knee flexors (by 12-23%), and jumping performance (by 3-10%) throughout recovery, in both trials. Average heart rate and total distance covered during games remained unchanged in PRO but not in PLA. Moreover, PRO resulted in a change of smaller magnitude in high-intensity running at the end of G2 (75-90 min vs. 0-15 min) compared to PLA (P = 0.012). KE concentric strength demonstrated a more prolonged decline in PLA (days 1 and 2 after G1, P = 0.014-0.018; days 1, 2 and 3 after G2, P = 0.016-0.037) compared to PRO (days 1 after G1, P = 0.013; days 1 and 2 after G2, P = 0.014-0.033) following both games. KF eccentric strength decreased throughout recovery after G1 (PLA: P=0.001-0.047-PRO: P =0.004-0.22) in both trials, whereas after G2 it declined throughout recovery in PLA (P = 0.000-0.013) but only during the first two days (P = 0.000-0.014) in PRO. No treatment effect was observed for delayed onset of muscle soreness, leukocyte counts, and creatine kinase activity. PRO resulted in a faster recovery of protein and lipid peroxidation markers after both games. Reduced glutathione demonstrated a more short-lived reduction after G2 in PRO compared to PLA. In summary, these results provide evidence that protein feeding may more efficiently restore football-specific performance and strength and provide antioxidant protection during a congested game fixture.


Assuntos
Desempenho Atlético/fisiologia , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais , Futebol Americano , Músculo Esquelético/fisiologia , Estudos Cross-Over , Método Duplo-Cego , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA