Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580150

RESUMO

The present study was conducted to assess the individual or combined effects of feeding dietary fat (whole-cracked rapeseed), nitrate, and 3-nitrooxypropanol (3-NOP) on protein profile, mineral composition, B vitamins, and nitrate residues in milk from dairy cows. Forty-eight Danish Holstein cows used in an 8 × 8 incomplete Latin square design were fed 8 factorially arranged diets ((30 or 63 g crude fat/kg DM) × (0 or 10 g nitrate/kg DM) × (0 or 80 mg 3-NOP/kg DM)) over 6 periods of 21 d each. In each period, milk samples were collected from individual cows during the third week by pooling milk obtained from 4 consecutive milkings, and analyzed for protein profile including protein modifications, mineral composition, riboflavin, cobalamin, and presence of nitrate residues. Fat supplementation led to an increase in the phosphorylation degree of αS1-CN by 8.5% due to a decreased relative proportion of αS1-CN 8P and an increased relative proportion of αS1-CN 9P and further to a decrease in the relative proportion of αS2-CN by 2.4%. Additionally, fat supplementation decreased the relative proportions of glycosylated and unglycosylated forms of κ-CN, consequently leading to a 3.6% decrease in total κ-CN. In skim milk, K, Ca, P, and Mg concentrations were altered by individual use of fat, nitrate, and 3-NOP. Feeding nitrate resulted in a 5.4% increase in riboflavin concentration in milk while supplementing 3-NOP increased cobalamin concentration in milk by 21.1%. The nitrate concentration in milk was increased upon feeding nitrate however, this increased concentration was well below the maximum permissible limit of nitrate in milk (<50 mg/L). In conclusion, no major changes were observed in milk protein, and mineral compositions by feeding fat, nitrate, and 3-NOP to dairy cows while the increased riboflavin and cobalamin by nitrate and 3-NOP, respectively, could be of beneficial nutritional value for milk consumers.

2.
J Dairy Sci ; 105(10): 8036-8053, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055851

RESUMO

The objective of the study was to quantify the effects on dry matter intake (DMI), nutrient digestibility, gas exchange, milk production, and milk quality in dairy cows fed fresh grass harvested at different maturity stages. Sixteen Danish Holstein cows in mid-lactation were divided into 4 blocks and used in 4 incomplete 4 × 2 Latin squares with 2 periods of 21 d. The cows received 1 of 4 treatments in each period, resulting in 8 cows per treatment, as follows: grass-clover silage supplemented with 6 kg/d concentrate pellets (SILc), fresh grass harvested at late maturity stage supplemented with 6 kg/d concentrate pellets (LATc), fresh grass harvested at late maturity stage (LAT), and fresh grass harvested at early maturity stage (ERL). The cows were housed in tiestalls and milked twice daily. The cows had ad libitum access to the forage, and concentrate pellets were divided into equal amounts and fed separately in the morning and afternoon. Fecal samples were collected to determine apparent total-tract digestibility, and samples of rumen fluid were collected for determination of short chain fatty acid composition. Halters were used for measuring eating and rumination time. Gas exchange was measured in open-circuit respiration chambers. Total DMI was higher in LATc and ERL (16.9 ± 0.45 and 15.5 ± 0.39 kg/d, respectively) compared with LAT (14.1 ± 0.42 kg/d). Relative to SILc, cows fed fresh grass experienced a convex pattern in DMI during the experiment. The changes in DMI were related to changes in leaf to stem ratio, fiber concentration, and organic matter digestibility determined in vitro in samples of the fresh grass harvested throughout the experiment. The apparent total-tract digestibility of organic matter was higher in SILc and LAT compared with LATc. Methane yield was lower for LATc compared with LAT (19.5 ± 0.61 vs. 22.6 ± 0.55 g of CH4/kg of DMI), and was not different between LAT and ERL. Compared with LAT, milk yield was higher for ERL (21.1 ± 1.14 vs. 23.4 ± 1.11 kg/d) and energy-corrected milk (ECM) yield was higher for LATc (21.5 ± 0.99 vs. 25.3 ± 1.03 kg/d). We detected no differences in milk or ECM yield between SILc and LATc. Milk protein yield was higher and milk fat concentration was lower in LATc compared with LAT. The fatty acid percentages of ∑C4-C14:1 and ∑C16 in milk were higher for SILc compared with LATc, signifying pronounced de novo synthesis. The n-6:n-3 ratio in milk fatty acids was lower for SILc and LAT compared with LATc, indicating improved nutritional quality for SILc and LAT. However, retinol concentration in milk was lower in SILc compared with all other treatments. The study implies that feeding silage instead of fresh grass has no effect on DMI, ECM yield, or CH4 yield, and that concentrate supplementation can increase milk production, affects milk quality, and reduces the effect on climate, whereas feeding less mature grass increases DMI and milk yield, but has no effect on CH4 yield.


Assuntos
Metano , Silagem , Animais , Bovinos , Dieta/veterinária , Digestão , Ingestão de Alimentos , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Lactação , Proteínas do Leite/análise , Poaceae/metabolismo , Rúmen/metabolismo , Silagem/análise , Vitamina A , Zea mays/metabolismo
3.
J Dairy Sci ; 95(12): 6905-17, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23040012

RESUMO

The objective of this study was to examine variation in overall milk, protein, and mineral composition of bovine milk in relation to rennet-induced coagulation, with the aim of elucidating the underlying causes of milk with impaired coagulation abilities. On the basis of an initial screening of 892 milk samples from 42 herds with Danish Jersey and Holstein-Friesian cows, a subset of 102 samples was selected to represent milk with good, poor, or noncoagulating properties (i.e., samples that within each breed represented the most extremes in regard to coagulation properties). Milk with good coagulation characteristics was defined as milk forming a strong coagulum based on oscillatory rheology, as indicated by high values for maximum coagulum strength (G'(max)) and curd firming rate (CFR) and a short rennet coagulation time. Poorly coagulating milk formed a weak coagulum, with a low G'(max) and CFR and a long rennet coagulation time. Noncoagulating milk was defined as milk that failed to form a coagulum, having G'(max) and CFR values of zero at measurements taken within 1h after addition of rennet. For both breeds, a lower content of total protein, total casein (CN) and κ-CN, and lower levels of minerals (Ca, P, Mg) were identified in poorly coagulating and noncoagulating milk in comparison with milk with good coagulation properties. Liquid chromatography/electrospray ionization-mass spectrometry revealed the presence of a great variety of genetic variants of the major milk proteins, namely, α(S1)-CN (variants B and C), α(S2)-CN (A), ß-CN (A(1), A(2), B, I, and F), κ-CN (A, B, and E), α-lactalbumin (B), and ß-lactoglobulin (A, B, and C). In poorly coagulating and noncoagulating milk samples of both breeds, the predominant composite genotype of α(S1)-, ß-, and κ-CN was BB-A(2)A(2)-AA, which confirmed a genetic contribution to impaired milk coagulation. Interestingly, subtle variations in posttranslational modification of CN were observed between the coagulation classes in both breeds. Poorly coagulating and noncoagulating milk contained a lower fraction of the least phosphorylated α(S1)-CN form, α(S1)-CN 8P, relative to total α(S1)-CN, along with a lower fraction of glycosylated κ-CN relative to total κ-CN. Thus, apparent variation was observed in the milk and protein composition, in the genetic makeup of the major milk proteins, and in the posttranslational modification level of CN between milk samples with either good or impaired coagulation ability, whereas the composition of poorly coagulating and noncoagulating milk was similar.


Assuntos
Proteínas do Leite/genética , Leite/química , Animais , Cálcio/análise , Bovinos/genética , Feminino , Variação Genética/genética , Magnésio/análise , Leite/normas , Proteínas do Leite/química , Fósforo/análise , Isoformas de Proteínas/genética , Proteômica/métodos , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA