Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36719746

RESUMO

Dietary potassium (K+) supplementation is associated with a lowering effect in blood pressure (BP), but not all studies agree. Here, we examined the effects of short- and long-term K+ supplementation on BP in mice, whether differences depend on the accompanying anion or the sodium (Na+) intake and molecular alterations in the kidney that may underlie BP changes. Relative to the control diet, BP was higher in mice fed a high NaCl (1.57% Na+) diet for 7 weeks or fed a K+-free diet for 2 weeks. BP was highest on a K+-free/high NaCl diet. Commensurate with increased abundance and phosphorylation of the thiazide sensitive sodium-chloride-cotransporter (NCC) on the K+-free/high NaCl diet, BP returned to normal with thiazides. Three weeks of a high K+ diet (5% K+) increased BP (predominantly during the night) independently of dietary Na+ or anion intake. Conversely, 4 days of KCl feeding reduced BP. Both feeding periods resulted in lower NCC levels but in increased levels of cleaved (active) α and γ subunits of the epithelial Na+ channel ENaC. The elevated BP after chronic K+ feeding was reduced by amiloride but not thiazide. Our results suggest that dietary K+ has an optimal threshold where it may be most effective for cardiovascular health.


Assuntos
Potássio na Dieta , Simportadores de Cloreto de Sódio , Camundongos , Animais , Pressão Sanguínea , Simportadores de Cloreto de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Tiazidas , Suplementos Nutricionais
2.
Cells ; 11(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011657

RESUMO

The thiazide-sensitive sodium chloride cotransporter (NCC) plays a vital role in maintaining sodium (Na+) and potassium (K+) homeostasis. NCC activity is modulated by with-no-lysine kinases 1 and 4 (WNK1 and WNK4), the abundance of which is controlled by the RING-type E3 ligase Cullin 3 (Cul3) and its substrate adapter Kelch-like protein 3. Dietary K+ intake has an inverse correlation with NCC activity, but the mechanism underlying this phenomenon remains to be fully elucidated. Here, we investigated the involvement of other members of the cullin family in mediating K+ effects on NCC phosphorylation (active form) and abundance. In kidneys from mice fed diets varying in K+ content, there were negative correlations between NCC (phosphorylated and total) and active (neddylated) forms of cullins (Cul1, 3, 4, and 5). High dietary K+ effects on phosphorylated NCC were attenuated in Cul3 mutant mice (CUL3-Het/Δ9). Short-term (30 min) and long-term (24 h) alterations in the extracellular K+ concentration did not affect cullin neddylation levels in ex vivo renal tubules. In the short term, the ability of high extracellular K+ to decrease NCC phosphorylation was preserved in the presence of MLN4924 (pan-cullin inhibitor), but the response to low extracellular K+ was absent. In the long term, MLN4924 attenuated the effects of high extracellular K+ on NCC phosphorylation, and responses to low extracellular K+ were absent. Our data suggest that in addition to Cul3, other cullins are involved in mediating the effects of K+ on NCC phosphorylation and abundance.


Assuntos
Proteínas Culina/metabolismo , Potássio/farmacologia , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ciclopentanos/farmacologia , Suplementos Nutricionais , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia
3.
J Physiol ; 597(17): 4451-4464, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31294465

RESUMO

Approximately 25% of the adult population is diagnosed with hypertension and it is therefore one of the biggest challenges for the health sector. The renin-angiotensin-aldosterone system (RAAS) adjusts effective circulating volume and ultimately blood pressure (BP). Accordingly, antihypertensive drugs targeting the RAAS have been a major focus in modern medical treatment. Low and high dietary K+ intakes are associated with increased or decreased BP and risk of cardiac failure, respectively, suggesting that dietary K+ augmentation has the potential to supplement or replace conventional anti-hypertensive drugs. Animal studies have indicated that the beneficial effects of high dietary K+ may be linked to a dominant regulatory role of plasma K+ on key renal transport proteins controlled by the RAAS. However, only a limited number of studies have investigated whether the reported mechanisms in animal models apply to humans. Furthermore, hypertension is often treated with so-called 'K+ sparing' drugs, thus complicating co-treatment with K+ supplementation. In this review, we revisit old concepts of RAAS effects in the kidney, relate them to effects of dietary K+ manipulation, and finally consider the clinical potential of treating hypertension with K+ supplementation alone or in combination with RAAS inhibitors. Collectively, a wealth of data suggest that increased dietary K+ intake may have beneficial effects on BP in the general population, but underlying medical conditions or current treatment regimens need to be carefully considered before implementing K+ supplementation in patients.


Assuntos
Aldosterona/metabolismo , Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Potássio/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Humanos , Hipertensão/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA