Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070212

RESUMO

The approved drugs that target carbonic anhydrases (CA, EC 4.2.1.1), a family of zinc metalloenzymes, comprise almost exclusively of primary sulfonamides (R-SO2NH2) as the zinc binding chemotype. New clinical applications for CA inhibitors, particularly for hard-to-treat cancers, has driven a growing interest in the development of novel CA inhibitors. We recently discovered that the thiazolidinedione heterocycle, where the ring nitrogen carries no substituent, is a new zinc binding group and an alternate CA inhibitor chemotype. This heterocycle is curiously also a substructure of the glitazone class of drugs used in the treatment options for type 2 diabetes. Herein, we investigate and characterise three glitazone drugs (troglitazone 11, rosiglitazone 12 and pioglitazone 13) for binding to CA using native mass spectrometry, protein X-ray crystallography and hydrogen-deuterium exchange (HDX) mass spectrometry, followed by CA enzyme inhibition studies. The glitazone drugs all displayed appreciable binding to and inhibition of CA isozymes. Given that thiazolidinediones are not credited as a zinc binding group nor known as CA inhibitors, our findings indicate that CA may be an off-target of these compounds when used clinically. Furthermore, thiazolidinediones may represent a new opportunity for the development of novel CA inhibitors as future drugs.


Assuntos
Inibidores da Anidrase Carbônica/análise , Inibidores da Anidrase Carbônica/farmacologia , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Tiazolidinedionas/análise , Tiazolidinedionas/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Cristalografia por Raios X , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Tiazolidinedionas/química
2.
PLoS Negl Trop Dis ; 14(3): e0008068, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163414

RESUMO

Trypanosoma cruzi parasites utilise de novo pyrimidine biosynthesis to produce DNA and survive within mammalian host cells. This pathway can be hijacked to assess the replication of intracellular parasites with the exogenous addition of a DNA specific probe. To identify suitable probe compounds for this application, a collection of pyrimidine nucleoside analogues was assessed for incorporation into T. cruzi intracellular amastigote DNA using image-based technology and script-based analysis. Associated mammalian cell toxicity of these compounds was also determined against both the parasite host cells (3T3 cells) and HEK293 cells. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into parasite DNA was the most effective of the probes tested, with minimal growth inhibition observed following either two or four hours EdU exposure. EdU was subsequently utilised as a DNA probe, followed by visualisation with click chemistry to a fluorescent azide, to assess the impact of drugs and compounds with previously demonstrated activity against T. cruzi parasites, on parasite replication. The inhibitory profiles of these molecules highlight the benefit of this approach for identifying surviving parasites post-treatment in vitro and classifying compounds as either fast or slow-acting. F-ara-EdU resulted in <50% activity observed against T. cruzi amastigotes following 48 hours incubation, at 73 µM. Collectively, this supports the further development of pyrimidine nucleosides as chemical probes to investigate replication of the parasite T. cruzi.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Testes de Sensibilidade Parasitária/métodos , Nucleosídeos de Pirimidina/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento , Células 3T3 , Animais , Antiprotozoários/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Nucleosídeos de Pirimidina/toxicidade
3.
J Med Chem ; 59(5): 2192-204, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26882437

RESUMO

Fragment-based drug discovery (FBDD) is contingent on the development of analytical methods to identify weak protein-fragment noncovalent interactions. Herein we have combined an underutilized fragment screening method, native state mass spectrometry, together with two proven and popular fragment screening methods, surface plasmon resonance and X-ray crystallography, in a fragment screening campaign against human carbonic anhydrase II (CA II). In an initial fragment screen against a 720-member fragment library (the "CSIRO Fragment Library") seven CA II binding fragments, including a selection of nonclassical CA II binding chemotypes, were identified. A further 70 compounds that comprised the initial hit chemotypes were subsequently sourced from the full CSIRO compound collection and screened. The fragment results were extremely well correlated across the three methods. Our findings demonstrate that there is a tremendous opportunity to apply native state mass spectrometry as a complementary fragment screening method to accelerate drug discovery.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/análise , Inibidores da Anidrase Carbônica/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Espectrometria de Massas , Bibliotecas de Moléculas Pequenas/farmacologia , Ressonância de Plasmônio de Superfície , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
Curr Pharm Des ; 16(29): 3277-87, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20819066

RESUMO

In recent years there has been renewed activity in the literature concerning the 1,3-dipolar cycloaddition reaction (1,3-DCR) of organic azides (R-N3) with alkynes (R'-C≡CH) to form 1,2,3-triazoles, i.e. the Huisgen synthesis. The use of catalytic Cu(I) leads to a dramatic rate enhancement (up to 10(7)-fold) and exclusive synthesis of the 1,4-disubstituted 1,2,3-triazole product. The reaction, now referred to as the copper-catalyzed azide-alkyne cycloaddition (CuAAC), meets the stringent criteria of a click-reaction in that it is modular, wide in scope, high yielding, has no byproducts, operates in water at ambient temperature, product purification is simple and the starting materials are readily available. The 1,3-DCR reaction has rapidly become the premier click chemistry reaction with applications spanning modern chemistry disciplines, including medicinal chemistry. Recently the 'tail' approach initiative for the development of carbonic anhydrase inhibitors (CAIs) has been combined with the synthetic versatility of click chemistry. This has proven a powerful combination leading to the synthesis of CAIs with useful biopharmaceutical properties and activities. This review will discuss complementary and contrasting applications that have utilized 'click tailing' for the development of CAIs. Applications encompass i) medicinal chemistry and drug discovery; ii) radiopharmaceutical development of positron emission topography (PET) chemical probes; and iii) in situ click chemistry.


Assuntos
Inibidores da Anidrase Carbônica/síntese química , Química Farmacêutica/métodos , Química Click/métodos , Descoberta de Drogas/métodos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Isoenzimas/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Estrutura Molecular , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA