Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(3): 1666-1677, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31911474

RESUMO

Major efforts are underway to identify agents that can potentiate effects of immune checkpoint inhibition. Here, we show that ascorbic acid (AA) treatment caused genomewide demethylation and enhanced expression of endogenous retroviral elements in lymphoma cells. AA also increased 5-hydroxymethylcytosine (5hmC) levels of CD8+ T cells and enhanced their cytotoxic activity in a lymphoma coculture system. High-dose AA treatment synergized with anti-PD1 therapy in a syngeneic lymphoma mouse model, resulting in marked inhibition of tumor growth compared with either agent alone. Analysis of the intratumoral epigenome revealed increased 5hmC with AA treatment, consistent with in vitro findings. Analysis of the tumor immune microenvironment revealed that AA strikingly increased intratumoral infiltration of CD8+ T cells and macrophages, suggesting enhanced tumor immune recognition. The combination treatment markedly enhanced intratumoral infiltration of macrophages and CD8+ T lymphocytes, granzyme B production by cytotoxic cells (cytotoxic T cells and natural killer cells), and interleukin 12 production by antigen-presenting cells compared with single-agent anti-PD1. These data indicate that AA potentiates anti-PD1 checkpoint inhibition through synergistic mechanisms. The study provides compelling rationale for testing combinations of high-dose AA and anti-PD1 agents in patients with aggressive B cell lymphoma as well as in preclinical models of other malignancies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Ácido Ascórbico/administração & dosagem , Linfoma/tratamento farmacológico , 5-Metilcitosina/análogos & derivados , Animais , Antígeno B7-H1 , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Granzimas , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral/efeitos dos fármacos
2.
J Clin Invest ; 129(4): 1612-1625, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702441

RESUMO

Although clear cell renal cell carcinoma (ccRCC) has been shown to result in widespread aberrant cytosine methylation and loss of 5-hydroxymethylcytosine (5hmC), the prognostic impact and therapeutic targeting of this epigenetic aberrancy has not been fully explored. Analysis of 576 primary ccRCC samples demonstrated that loss of 5hmC was strongly associated with aggressive clinicopathologic features and was an independent adverse prognostic factor. Loss of 5hmC also predicted reduced progression-free survival after resection of nonmetastatic disease. The loss of 5hmC in ccRCC was not due to mutational or transcriptional inactivation of ten eleven translocation (TET) enzymes, but to their functional inactivation by l-2-hydroxyglutarate (L2HG), which was overexpressed due to the deletion and underexpression of L2HG dehydrogenase (L2HGDH). Ascorbic acid (AA) reduced methylation and restored genome-wide 5hmC levels via TET activation. Fluorescence quenching of the recombinant TET-2 protein was unaffected by L2HG in the presence of AA. Pharmacologic AA treatment led to reduced growth of ccRCC in vitro and reduced tumor growth in vivo, with increased intratumoral 5hmC. These data demonstrate that reduced 5hmC is associated with reduced survival in ccRCC and provide a preclinical rationale for exploring the therapeutic potential of high-dose AA in ccRCC.


Assuntos
5-Metilcitosina/análogos & derivados , Oxirredutases do Álcool/biossíntese , Ácido Ascórbico/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , 5-Metilcitosina/metabolismo , Adulto , Oxirredutases do Álcool/genética , Animais , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos
3.
J Neurosci ; 28(34): 8454-61, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18716203

RESUMO

Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Because dopamine-enhancing drugs increase wakefulness, we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood, but brain dopamine systems have been implicated. Here, we test whether one night of sleep deprivation changes dopamine brain activity. We studied 15 healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/D3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice: after one night of rested sleep and after one night of sleep deprivation. The specific binding of [11C]raclopride in the striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast, sleep deprivation did not affect the specific binding of [11C]cocaine in the striatum. Because [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we cannot rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Because dopamine-enhancing drugs increase wakefulness, we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment.


Assuntos
Encéfalo/metabolismo , Antagonistas de Dopamina/metabolismo , Racloprida/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Privação do Sono/metabolismo , Adulto , Nível de Alerta , Encéfalo/diagnóstico por imagem , Cocaína/metabolismo , Transtornos Cognitivos/etiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Fadiga/etiologia , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Privação do Sono/fisiopatologia , Privação do Sono/psicologia , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA