Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 112: 8-22, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33600947

RESUMO

In the present study, a hot water crude extract from Ulva intestinalis (Ui-HWCE) was used as a dietary supplement, and the effects on growth, immune responses, and resistance against white spot syndrome virus (WSSV) and yellowhead virus (YHV) infection in Pacific white shrimp (Litopenaeus vannamei) were investigated. Chemical analyses of Ui-HWCE revealed 13.75 ± 0.41% sulfate, 37.86 ± 5.96% uronic acid, and 46.63 ± 5.16% carbohydrate contents. The monosaccharide content of Ui-HWCE contained glucose (6.81 ± 0.94%), xylose (4.15 ± 0.11%), and rhamnose (25.84 ± 0.80%). Functional group analysis of Ui-HWCE by Fourier transform infrared (FTIR) spectroscopy revealed a typical infrared spectrum of ulvan similar to the infrared spectrum of commercially purified ulvan from Ulva armoricana (77.86 ± 2.19% similarity). Ui-HWCE was added to shrimp diets via top-dressing at 0, 1, 5, and 10 g/kg diet. After 28 days, Ui-HWCE supplementation at 5 g/kg diet efficiently improved shrimp growth performance, as indicated by weight gain, average daily growth, specific growth rates, and villus height determined by observing gut morphology. Additionally, Ui-HWCE feed supplementation at 5 g/kg diet significantly increased immune responses against a pathogenic bacterium (Vibrio parahaemolyticus AHPND stain), including phagocytic activity and clearance efficiency. Furthermore, Ui-HWCE feed supplementation upregulated the expression of several immune-related genes in the hemocytes and gills. Ui-HWCE supplementation at 1 and 5 g/kg resulted in effective anti-YHV but not anti-WSSV activity, which significantly decreased the mortality rate and YHV burden in surviving shrimp. It was concluded that Ui-HWCE supplied at 5 g/kg diet exhibits growth-promoting, immune-stimulatory, and antiviral activity that could protect L. vannamei against YHV infection.


Assuntos
Penaeidae/imunologia , Extratos Vegetais/metabolismo , Roniviridae/fisiologia , Ulva/química , Vírus da Síndrome da Mancha Branca 1/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Penaeidae/crescimento & desenvolvimento , Penaeidae/virologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Distribuição Aleatória
2.
Fish Shellfish Immunol ; 94: 90-98, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470138

RESUMO

Live food organisms like Artemia have been used for delivery of different substances such as nutrients, probiotics and immune-stimulants to aquatic animals. Previously, we reported that sulfated galactans (SG) from the red seaweed Gracilaria fisheri (G. fisheri) increased immune activity in shrimp. In the present study we further investigated the capacity and efficiency of bioencapsulation of SG in adult Artemia for delivery to tissues and potentially boosting the expression of immune genes in post larvae shrimp. SG were labelled with FITC (FITC-SG) for in vivo tracking in shrimp. Bioencapsulation of adult Artemia with FITC-SG (0-100 µg mL-1) was performed and the fluorescence intensity was detected in the gut lumen after enrichment periods of 30 min, 1 h, 2 h, 6 h and 24 h. The results showed the Artemia took up SG over time in a concentration-dependent manner. Shrimp were fed with the bioencapsulated Artemia (FITC-SG, 20 µg mL-1) and the shrimp were evaluated under a stereo-fluorescent microscope. At 24 h after administration, FITC-SG was located in gills and hepatopancreas and also bound with haemocytes. With daily SG administration, the genes IMD, IKKß were up-regulated (after 1 day) while genes dicer and proPO-I were up-regulated later (after 7 days). Moreover, continued monitoring of shrimp fed for 3 consecutive days only with SG at the dose of 0.5 mg g-1 BW showed increases in the expression of IMD, IKKß genes on day 1 and which gradually declined to normal levels on day 14, while the expression of dicer and proPO-I was increased on day 3 and remained high on day 14. These results demonstrate that bioencapsulation of SG in adult Artemia successfully delivers SG to shrimp tissues, which then bind with haemocytes and subsequently activate immune genes, and potentially increase immunity in shrimp. In addition, the present study suggests that a 3-consecutive-day regimen of SG supplemented in Artemia (0.5 mg g-1 BW) may boost and sustain the enhanced immune functions in post larvae shrimp.


Assuntos
Artemia/química , Galactanos/metabolismo , Imunidade Inata/efeitos dos fármacos , Penaeidae/imunologia , Sulfatos/metabolismo , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Larva/metabolismo , Penaeidae/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/metabolismo , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA