Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Rep ; 13(1): 7225, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142620

RESUMO

Glutamate-induced neurotoxicity in the HT22 mouse hippocampal neuronal cell line has been recognized as a valuable cell model for the study of neurotoxicity associated with neurodegenerative diseases including Alzheimer's disease (AD). However, the relevance of this cell model for AD pathogenesis and preclinical drug screening remains to be more elucidated. While there is increasing use of this cell model in a number of studies, relatively little is known about its underlying molecular signatures in relation to AD. Here, our RNA sequencing study provides the first transcriptomic and network analyses of HT22 cells following glutamate exposure. Several differentially expressed genes (DEGs) and their relationships specific to AD were identified. Additionally, the usefulness of this cell model as a drug screening system was assessed by determining the expression of those AD-associated DEGs in response to two medicinal plant extracts, Acanthus ebracteatus and Streblus asper, that have been previously shown to be protective in this cell model. In summary, the present study reports newly identified AD-specific molecular signatures in glutamate-injured HT22 cells, suggesting that this cell can be a valuable model system for the screening and evaluation of new anti-AD agents, particularly from natural products.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Estresse Oxidativo/fisiologia , Transcriptoma , Neurônios/metabolismo , Linhagem Celular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo
2.
Molecules ; 28(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241795

RESUMO

Our early work indicated that methanolic extracts from the flowers, leaves, bark, and isolated compounds of Acacia saligna exhibited significant antioxidant activities in vitro. The overproduction of reactive oxygen species (ROS) in the mitochondria (mt-ROS) interfered with glucose uptake, metabolism, and its AMPK-dependent pathway, contributing to hyperglycemia and diabetes. This study aimed to screen the ability of these extracts and isolated compounds to attenuate the production of ROS and maintain mitochondrial function via the restoration of mitochondrial membrane potential (MMP) in 3T3-L1 adipocytes. Downstream effects were investigated via an immunoblot analysis of the AMPK signalling pathway and glucose uptake assays. All methanolic extracts effectively reduced cellular ROS and mt-ROS levels, restored the MMP, activated AMPK-α, and enhanced cellular glucose uptake. At 10 µM, (-)-epicatechin-6 (from methanolic leaf and bark extracts) markedly reduced ROS and mt-ROS levels by almost 30% and 50%, respectively, with an MMP potential ratio 2.2-fold higher compared to the vehicle control. (-)-Epicatechin 6 increased the phosphorylation of AMPK-α by 43%, with an 88% higher glucose uptake than the control. Other isolated compounds include naringenin 1, naringenin-7-O-α-L-arabinopyranoside 2, isosalipurposide 3, D-(+)-pinitol 5a, and (-)-pinitol 5b, which also performed relatively well across all assays. Australian A. saligna active extracts and compounds can reduce ROS oxidative stress, improve mitochondrial function, and enhance glucose uptake through AMPK-α activation in adipocytes, supporting its potential antidiabetic application.


Assuntos
Acacia , Catequina , Hipoglicemiantes , Animais , Camundongos , Células 3T3-L1 , Acacia/química , Adipócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Austrália , Catequina/química , Catequina/farmacologia , Glucose/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo
3.
Molecules ; 28(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36770694

RESUMO

Acacia saligna growing in Australia has not been fully investigated for its bioactive phytochemicals. Sequential polarity-based extraction was employed to provide four different extracts from individual parts of A. saligna. Bioactive extracts were determined using in vitro antioxidant and yeast α-glucosidase inhibitory assays. Methanolic extracts from barks, leaves, and flowers are the most active and have no toxicity against 3T3-L1 adipocytes. Compound isolation of bioactive extracts provided us with ten compounds. Among them are two novel natural products; naringenin-7-O-α-L-arabinopyranoside 2 and (3S*,5S*)-3-hydroxy-5-(2-aminoethyl) dihydrofuran-2(3H)-one 9. D-(+)-pinitol 5a (from barks and flowers), (-)-pinitol 5b (exclusively from leaf), and 2,4-di-t-butylphenol 7 are known natural products and new to A. saligna. (-)-Epicatechin 6, quercitrin 4, and myricitrin 8 showed potent antioxidant activities consistently in DPPH and ABTS assays. (-)-Epicatechin 6 (IC50 = 63.58 µM),D-(+)-pinitol 5a (IC50 = 74.69 µM), and naringenin 1 (IC50 = 89.71 µM) are the strong inhibitors against the α-glucosidase enzyme. The presence of these compounds supports the activities exerted in our methanolic extracts. The presence of 2,4-di-t-butylphenol 7 may support the reported allelopathic and antifungal activities. The outcome of this study indicates the potential of Australian A. saligna as a rich source of bioactive compounds for drug discovery targeting type 2 diabetes.


Assuntos
Acacia , Catequina , Diabetes Mellitus Tipo 2 , Humanos , Extratos Vegetais/química , Antioxidantes/química , alfa-Glucosidases , Austrália , Compostos Fitoquímicos/farmacologia
4.
Nutrients ; 14(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36079924

RESUMO

Hyperglycemia is one of the important causes of neurodegenerative disorders and aging. Aquilaria crassna Pierre ex Lec (AC) has been widely used to relieve various health ailments. However, the neuroprotective and anti-aging effects against high glucose induction have not been investigated. This study aimed to investigate the effects of hexane extract of AC leaves (ACH) in vitro using human neuroblastoma SH-SY5Y cells and in vivo using nematode Caenorhabditis elegans. SH-SY5Y cells and C. elegans were pre-exposed with high glucose, followed by ACH treatment. To investigate neuroprotective activities, neurite outgrowth and cell cycle progression were determined in SH-SY5Y cells. In addition, C. elegans was used to determine ACH effects on antioxidant activity, longevity, and healthspan. In addition, ACH phytochemicals were analyzed and the possible active compounds were identified using a molecular docking study. ACH exerted neuroprotective effects by inducing neurite outgrowth via upregulating growth-associated protein 43 and teneurin-4 expression and normalizing cell cycle progression through the regulation of cyclin D1 and SIRT1 expression. Furthermore, ACH prolonged lifespan, improved body size, body length, and brood size, and reduced intracellular ROS accumulation in high glucose-induced C. elegans via the activation of gene expression in the DAF-16/FoxO pathway. Finally, phytochemicals of ACH were analyzed and revealed that ß-sitosterol and stigmasterol were the possible active constituents in inhibiting insulin-like growth factor 1 receptor (IGFR). The results of this study establish ACH as an alternative medicine to defend against high glucose effects on neurotoxicity and aging.


Assuntos
Caenorhabditis elegans , Extratos Vegetais , Thymelaeaceae , Animais , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Glucose/efeitos adversos , Humanos , Longevidade , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Thymelaeaceae/química
5.
Nutrients ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145217

RESUMO

Phenanthrene (Phe) exposure is associated with skin ageing, cardiotoxicity and developmental defects. Here, we investigated the mode of Phe toxicity in human keratinocytes (HaCaT cells) and the attenuation of toxicity on pre-treatment (6 h) with ethanol extract of Hibiscus sabdariffa calyxes (HS). Cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm) alteration, changes in the transcriptional activity of selected genes involved in phase I and II metabolism, antioxidant response and gluconeogenesis, western blot and docking studies were performed to determine the protective effect of HS against Phe. Phe (250 µM) induced cytotoxicity in HaCaT cells through AhR-independent, CAR/PXR/RXR-mediated activation of CYP1A1 and the subsequent alterations in phase I and II metabolism genes. Further, CYP1A1 activation by Phe induced ROS generation, reduced ΔΨm and modulated antioxidant response, phase II metabolism and gluconeogenesis-related gene expression. However, pre-treatment with HS extract restored the pathological changes observed upon Phe exposure through CYP1A1 inhibition. Docking studies showed the site-specific activation of PXR and CAR by Phe and inhibition of CYP1A1 and CYP3A4 by the bioactive compounds of HS similar to that of the positive controls tested. Our results conclude that HS extract can attenuate Phe-induced toxicity in HaCaT cells through CAR/PXR/RXR mediated inhibition of CYP1A1.


Assuntos
Hibiscus , Fenantrenos , Extratos Vegetais/farmacologia , Receptores de Esteroides , Antioxidantes/farmacologia , Receptor Constitutivo de Androstano , Citocromo P-450 CYP1A1 , Citocromo P-450 CYP3A , Etanol , Células HaCaT , Humanos , Receptor de Pregnano X , Espécies Reativas de Oxigênio , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/metabolismo
6.
Saudi J Biol Sci ; 29(7): 103330, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35721231

RESUMO

Diabetic foot ulcer (DFU) is a common and devastating complication in diabetic patients and is associated with an elevated risk of amputation and mortality. DFU remains a major therapeutic challenge due to poor understanding of its underlying pathogenesis. This complication is characterized by impaired wound healing; however, mechanisms causing this impairment are complicated and involve interactions between many different cell types and infections. In addition to other conventional DFU treatments, herbal foot baths are also common, although little is known about their mechanisms of action, and they contain a wide variety of herbal ingredients. In this study, we aimed to examine the effects of three polyherbal formulations consisting of medicinal plants used in traditional Thai herbal foot baths on wound healing, anti-inflammation, angiogenesis, and extracellular matrix modulation using high-concentration glucose-treated human keratinocytes, in addition to antibacterial evaluation. Our results showed that formulation 3 (F3) possessed the greatest potential to restore the impairment of keratinocytes caused by high glucose concentrations. We found that F3 could inhibit the growth of Staphylococcus aureus, accelerate wound healing, and upregulate the expression of TIMP-1, VEGF, and TGF-ß, and downregulate the expression of TNF-α, IL-6, and MMP-9. Collectively, these data support the potential of F3 for therapeutic development in the treatment of DFU.

7.
Nutrients ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615695

RESUMO

The tea plant (C. sinensis) has traditionally been consumed worldwide as "tea" for its many health benefits, with the potential for the prevention and therapy of various conditions. Regardless of its long history, the use of tea plants in modern times seems not to have changed much, as the beverage remains the most popular form. This review aimed to compile scientific information about the role and action of tea plants, as well as their status concerning clinical applications, based on the currently available evidence, with a focus on metabolic syndrome, mainly covering obesity, diabetes, and cardiovascular disease. It has been recognized that these diseases pose a significant threat to public health, and the development of effective treatment and prevention strategies is necessary but still challenging. In this article, the potential benefits of tea plants and their derived bioactive components (such as epigallocatechin-3-gallate) as anti-obesity, anti-diabetic, and anti-cardiovascular agents are clearly shown and emphasized, along with their mechanisms of action. However, according to the status of the clinical translation of tea plants, particularly in drug development, more substantial efforts in well-designed, randomized, controlled trials are required to expand their applications in treating the three major metabolic disorders and avoiding the toxicity caused by overconsumption.


Assuntos
Camellia sinensis , Doenças Cardiovasculares , Catequina , Diabetes Mellitus , Síndrome Metabólica , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/prevenção & controle , Obesidade , Catequina/farmacologia
8.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616194

RESUMO

The skin is the largest organ that performs a variety of the body's essential functions. Impairment of skin structure and functions during the aging process might severely impact our health and well-being. Extensive evidence suggests that reactive oxygen species play a fundamental role in skin aging through the activation of the related degradative enzymes. Here, the 16 Thai medicinal plant species were screened for their potential anti-skin aging properties. All extracts were investigated for total phenolic and flavonoid contents, antioxidant, anti-elastase, and anti-tyrosinase activities, as well as the binding ability of compounds with target enzymes by molecular docking. Among all the plants screened, the leaves of A. occidentale and G. zeylanicum exhibited strong antioxidants and inhibition against elastase and tyrosinase. Other potential plants include S. alata leaf and A. catechu fruit, with relatively high anti-elastase and anti-tyrosinase activities, respectively. These results are also consistent with docking studies of compounds derived from these plants. The inhibitory actions were found to be more highly positively correlated with phenolics than flavonoids. Taken together, our findings reveal some Thai plants, along with candidate compounds as natural sources of antioxidants and potent inhibitors of elastase and tyrosinase, could be developed as promising and effective agents for skin aging therapy.

9.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34577601

RESUMO

Alzheimer's disease (AD) is implicated in the imbalance of several proteins, including Amyloid-ß (Aß), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aß generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3'-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings.

10.
Nutrients ; 13(7)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371875

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species' (ROS') production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.


Assuntos
Hipocampo/efeitos dos fármacos , Momordica charantia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Estigmasterol/farmacologia , Vitamina E/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Momordica charantia/química , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Estigmasterol/isolamento & purificação , Vitamina E/isolamento & purificação
11.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201882

RESUMO

Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer's disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas' health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.


Assuntos
Autofagia , Células/metabolismo , Saúde , Homeostase , Chás de Ervas , Animais , Humanos
12.
J Tradit Complement Med ; 11(2): 144-157, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33520683

RESUMO

BACKGROUND AND AIM: The novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is now become a worldwide pandemic bringing over 71 million confirmed cases, while the specific drugs and vaccines approved for this disease are still limited regarding their effectiveness and adverse events. Since virus incidences are still on rise, infectivity and mortality may also rise in the near future, natural products are highly considered to be valuable sources for the discovery of new antiviral drugs against SARS-CoV-2. This present review aims to comprehensively summarize the up-to-date scientific literatures on biological activities of plant- and mushroom-derived compounds relevant to mechanistic targets involved in SARS-CoV-2 infection and inflammatory-associated pathogenesis, including viral entry, replication and release, and the renin-angiotensin-aldosterone system (RAAS). EXPERIMENTAL PROCEDURE: Data were retrieved from a literature search available on PubMed, Scopus and Google Scholar databases and collected until the end of May 2020. The findings from in vitro cell and non-cell based studies were considered, while the results of in silico studies were excluded. RESULTS AND CONCLUSION: Based on the previous findings in SARS-CoV studies, except in silico molecular docking analysis, herein, we provide a total of 150 natural compounds as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than the existing therapeutic agents. Several natural compounds have showed their promising actions on multiple therapeutic targets, which should be further explored. Among them, quercetin, one of the most abundant of plant flavonoids, is proposed as a lead candidate with its ability on the virus side to inhibit SARS-CoV spike protein-angiotensin-converting enzyme 2 (ACE2) interaction, viral protease and helicase activities, as well as on the host cell side to inhibit ACE activity and increase intracellular zinc level.

13.
J Tradit Complement Med ; 10(3): 301-308, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32670825

RESUMO

Neurodegenerative diseases (NDD) are a range of debilitating conditions of the brain involving progressive loss of neurons, many of which are still currently incurable despite enormous efforts on drug discovery and development in the past decade. As NDD is closely linked to old age, the rapid worldwide growth in the aging population contributes to an increasing number of people with one of these incurable diseases and therefore it is considered a significant global health issue. There is an urgent need for novel effective treatments for NDD, and many new research strategies are centered on traditional medicine as an alternative or complementary solution. Several previous findings have suggested that glutamate toxicity drives neurodegeneration in many NDD, and the medicinal plants with anti-glutamate toxicity properties can be potentially used for their treatment. In order to obtain data relating to natural products against glutamate toxicity, six candidate plant species of Thailand were identified. Studies utilizing these herbs were searched for using the herb name (Latin and common names) along with the term "glutamate" in the following databases across all available years: PubMed, Scopus, and Google Scholar. This review emphasizes the importance of glutamate toxicity in NDD and summarizes individual plants and their active constituents with the mechanism of action against glutamate toxicity-mediated neuronal cell death that could be a promising resource for future NDD therapy. TAXONOMY CLASSIFICATION BY EVISE: Alzheimer's disease, Neurodegenerative diseases, Cell culture, Molecular Biology, Traditional herbal medicine, Oxidative stress, Glutamate neurotransmitter.

14.
BMC Complement Altern Med ; 19(1): 164, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286949

RESUMO

BACKGROUND: Caesalpinia mimosoides, a vegetable consumed in Thailand, has been reported to exhibit in vitro antioxidant properties. The in vivo antioxidant and anti-aging activities have not been investigated. The aim of this research was to study the antioxidant activity of C. mimosoides extracts in Caenorhabditis elegans, a widely used model organism in this context. METHODS: C. elegans were treated with C. mimosoides extracts in a various concentrations. To investigate the protective effects of the extract against oxidative stress, wild-type N2 were used to determine survival rate under oxidative stress and intracellular ROS. To study underlying mechanisms, the mutant strains with GFP reporter gene including TJ356, CF1553, EU1 and LD4 were used to study DAF-16, SOD-3, SKN-1 and GST-4 gene, respectively. Lifespan and aging pigment of the worms were also investigated. RESULTS: A leaf extract of C. mimosoides improved resistance to oxidative stress and reduced intracellular ROS accumulation in nematodes. The antioxidant effects were mediated through the DAF-16/FOXO pathway and SOD-3 expression, whereas the expression of SKN-1 and GST-4 were not altered. The extract also prolonged lifespan and decreased aging pigments, while the body length and brood size of the worms were not affected by the extract, indicating low toxicity and excluding dietary restriction. CONCLUSIONS: The results of this study establish the antioxidant activity of C. mimosoides extract in vivo and suggest its potential as a dietary supplement and alternative medicine to defend against oxidative stress and aging, which should be investigated in intervention studies.


Assuntos
Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caesalpinia/química , Longevidade/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Tamanho Corporal/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Flavonoides/análise , Sequestradores de Radicais Livres/farmacologia , Metanol , Naftoquinonas , Fenóis/análise , Folhas de Planta/química , Espécies Reativas de Oxigênio , Reprodução/efeitos dos fármacos
15.
BMC Complement Altern Med ; 18(1): 278, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326896

RESUMO

BACKGROUND: Acanthus ebracteatus (AE), an herb native to Asia, has been recognized in traditional folk medicine not only for its antioxidant properties and various pharmacological activities but also as an ingredient of longevity formulas. However, its anti-neurodegenerative potential is not yet clearly known. This work aimed to evaluate the protective effect of AE leaf extract against glutamate-induced oxidative damage in mouse hippocampal HT22 cells, a neurodegenerative model system due to a reduction in glutathione levels and an increase in reactive oxygen species (ROS). METHODS: Cell viability, apoptosis, and ROS assays were performed to assess the protective effect of AE leaf extract against glutamate-induced oxidative toxicity in HT22 cells. The antioxidant capacity of AE was evaluated using in vitro radical scavenging assays. The subcellular localization of apoptosis-inducing factor (AIF) and the mRNA and protein levels of genes associated with the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant system were determined to elucidate the mechanisms underlying the neuroprotective effect of AE leaf extract. RESULTS: We demonstrated that AE leaf extract is capable of attenuating the intracellular ROS generation and HT22 cell death induced by glutamate in a concentration-dependent manner. Co-treatment of glutamate with the extract significantly reduced apoptotic cell death via inhibition of AIF nuclear translocation. The increases in Nrf2 levels in the nucleus and gene expression levels of antioxidant-related downstream genes under Nrf2 control were found to be significant in cells treated with the extract. CONCLUSIONS: The results suggested that AE leaf extract possesses neuroprotective activity against glutamate-induced oxidative injury and may have therapeutic potential for the treatment of neurodegenerative diseases associated with oxidative stress.


Assuntos
Acanthaceae/química , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Compostos de Bifenilo , Linhagem Celular , Camundongos , Picratos , Folhas de Planta/química
16.
BMC Complement Altern Med ; 18(1): 223, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-30041641

RESUMO

BACKGROUND: Streblus asper is a well-known plant native to Southeast Asia. Different parts of the plant have been traditionally used for various medicinal purposes. However, there is very little scientific evidence reporting its therapeutic benefits for potential treatment of Alzheimer's disease (AD). The study aimed to evaluate antibacterial, antioxidant, acetylcholinesterase (AChE) inhibition, and neuroprotective properties of S. asper leaf extracts with the primary objective of enhancing therapeutic applications and facilitating activity-guided isolation of the active chemical constituents. METHODS: The leaves of S. asper were extracted in ethanol and subsequently fractionated into neutral, acid and base fractions. The phytochemical constituents of each fraction were analyzed using GC-MS. The antibacterial activity was evaluated using a broth microdilution method. The antioxidant activity was determined using DPPH and ABTS radical scavenging assays. The neuroprotective activity against glutamate-induced toxicity was tested on hippocampal neuronal HT22 cell line by evaluating the cell viability using MTT assay. The AChE inhibitory activity was screened by thin-layer chromatography (TLC) bioautographic method. RESULTS: The partition of the S. asper ethanolic leaf extract yielded the highest mass of phytochemical constitutions in the neutral fraction and the lowest in the basic fraction. Amongst the three fractions, the acidic fraction showed the strongest antibacterial activity against gram-positive bacteria. The antioxidant activities of three fractions were found in the order of acidic > basic > neutral, whereas the decreasing order of neuroprotective activity was neutral > basic > acidic. TLC bioautography revealed one component in the neutral fraction exhibited anti-AChE activity. While in the acid fraction, two components showed inhibitory activity against AChE. GC-MS analysis of three fractions showed the presence of major phytochemical constituents including terpenoids, steroids, phenolics, fatty acids, and lipidic plant hormone. CONCLUSIONS: Our findings have demonstrated the therapeutic potential of three fractions extracted from S. asper leaves as a promising natural source for neuroprotective agents with additional actions of antibacterials and antioxidants, along with AChE inhibitors that will benefit in the development of new natural compounds in therapies against AD.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Moraceae/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Animais , Antibacterianos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Compostos de Bifenilo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Cromatografia Gasosa-Espectrometria de Massas , Hipocampo/citologia , Camundongos , Fármacos Neuroprotetores/química , Picratos , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química
17.
BMC Complement Altern Med ; 17(1): 551, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282044

RESUMO

BACKGROUND: Although such local herb as Streblus asper (family Moraceae) has long been recognized for traditional folk medicines and important ingredient of traditional longevity formula, its anti-neurodegeneration or anti-aging activity is little known. This study aimed to investigate the neuroprotective effect of S. asper leaf extracts (SA-EE) against toxicity of glutamate-mediated oxidative stress, a crucial factor contributing to the neuronal loss in age-associated neurodegenerative diseases and the underlying mechanism as well as to evaluate its longevity effect. METHODS: Using mouse hippocampal HT22 as a model for glutamate oxidative toxicity, we carried out MTT and LDH assays including Annexin V-FITC/propidium iodide staining to determine the SA-EE effect against glutamate-induced cell death. Antioxidant activities of SA-EE were evaluated using the radical scavenging and DCFH-DA assays. To elucidate the underlying mechanisms, SA-EE treated cells were analyzed for the expressions of mRNA and proteins interested by immunofluorescent staining, western blot analysis and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) techniques. The longevity effect of SA-EE was examined on C. elegans by lifespan assay. RESULTS: We demonstrate that a concentration-dependent reduction of glutamate-induced cytotoxicity was significant after SA-EE treatment as measured by MTT and LDH assays. Annexin V-FITC/propidium iodide and immunofluorescent staining showed that co-treatment of glutamate with SA-EE significantly reduced apoptotic-inducing factor (AIF)-dependent apoptotic cell death. DCFH-DA assay revealed that this extract was capable of dose dependently attenuating the ROS caused by glutamate. Western blot analysis and qRT-PCR showed that nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels in the nucleus, as well as mRNA levels of antioxidant-related genes under Nrf2 regulation were significantly increased by SA-EE. Furthermore, this extract was capable of extending the lifespan of C. elegans. CONCLUSIONS: SA-EE possesses both longevity effects and neuroprotective activity against glutamate-induced cell death, supporting its therapeutic potential for the treatment of age-associated neurodegenerative diseases.


Assuntos
Ácido Glutâmico/toxicidade , Moraceae , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caenorhabditis elegans , Linhagem Celular , Sobrevivência Celular , Etanol , Hipocampo/citologia , Longevidade/efeitos dos fármacos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Folhas de Planta/química , Substâncias Protetoras/química , Transdução de Sinais/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-23762130

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory deficits and death. While the number of individuals with AD is rising each year due to the longer life expectancy worldwide, current therapy can only somewhat relieve the symptoms of AD. There is no proven medication to cure or prevent the disease, possibly due to a lack of knowledge regarding the molecular mechanisms underlying disease pathogenesis. Most previous studies have accepted the "amyloid hypothesis," in which the neuropathogenesis of AD is believed to be triggered by the accumulation of the toxic amyloid beta (A ß ) protein in the central nervous system (CNS). Lately, knowledge that may be critical to unraveling the hidden pathogenic pathway of AD has been revealed. This review concentrates on the toxicity of A ß and the mechanism of accumulation of this toxic protein in the brain of individuals with AD and also summarizes recent advances in the study of these accumulation mechanisms together with the role of herbal medicines that could facilitate the development of more effective therapeutic and preventive strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA