Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 30008-30028, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37312240

RESUMO

Prostate malignancy represents the second leading cause of cancer-specific death among the male population worldwide. Herein, enhanced intracellular magnetic fluid hyperthermia is applied in vitro to treat prostate cancer (PCa) cells with minimum invasiveness and toxicity and highly specific targeting. We designed and optimized novel shape-anisotropic magnetic core-shell-shell nanoparticles (i.e., trimagnetic nanoparticles - TMNPs) with significant magnetothermal conversion following an exchange coupling effect to an external alternating magnetic field (AMF). The functional properties of the best candidate in terms of heating efficiency (i.e., Fe3O4@Mn0.5Zn0.5Fe2O4@CoFe2O4) were exploited following surface decoration with PCa cell membranes (CM) and/or LN1 cell-penetrating peptide (CPP). We demonstrated that the combination of biomimetic dual CM-CPP targeting and AMF responsiveness significantly induces caspase 9-mediated apoptosis of PCa cells. Furthermore, a downregulation of the cell cycle progression markers and a decrease of the migration rate in surviving cells were observed in response to the TMNP-assisted magnetic hyperthermia, suggesting a reduction in cancer cell aggressiveness.


Assuntos
Peptídeos Penetradores de Células , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Neoplasias da Próstata , Masculino , Humanos , Nanopartículas/química , Membrana Celular , Campos Magnéticos , Neoplasias da Próstata/terapia , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química
2.
ACS Appl Mater Interfaces ; 15(19): 22999-23011, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132437

RESUMO

CuFeS2 chalcopyrite nanoparticles (NPs) can generate heat under exposure to near-infrared laser irradiation. Here, we develop a protocol to decorate the surface of CuFeS2 NPs (13 nm) with a thermoresponsive (TR) polymer based on poly(ethylene glycol methacrylate) to combine heat-mediated drug delivery and photothermal heat damage. The resulting TR-CuFeS2 NPs feature a small hydrodynamic size (∼75 nm), along with high colloidal stability and a TR transition temperature of 41 °C in physiological conditions. Remarkably, TR-CuFeS2 NPs, when exposed to a laser beam (in the range of 0.5 and 1.5 W/cm2) at NP concentrations as low as 40-50 µg Cu/mL, exhibit a high heating performance with a rise in the solution temperature to hyperthermia therapeutic values (42-45 °C). Furthermore, TR-CuFeS2 NPs worked as nanocarriers, being able to load an appreciable amount of doxorubicin (90 µg DOXO/mg Cu), a chemotherapeutic agent whose release could then be triggered by exposing the NPs to a laser beam (through which a hyperthermia temperature above 42 °C could be reached). In an in vitro study performed on U87 human glioblastoma cells, bare TR-CuFeS2 NPs were proven to be nontoxic at a Cu concentration up to 40 µg/mL, while at the same low dose, the drug-loaded TR-CuFeS2-DOXO NPs displayed synergistic cytotoxic effects due to the combination of direct heat damage and DOXO chemotherapy, under photo-irradiation by a 808 nm laser (1.2 W/cm2). Finally, under a 808 nm laser, the TR-CuFeS2 NPs generated a tunable amount of reactive oxygen species depending on the applied power density and NP concentration.


Assuntos
Hipertermia Induzida , Nanopartículas , Humanos , Polímeros , Hipertermia Induzida/métodos , Sistemas de Liberação de Medicamentos , Fototerapia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral
3.
Adv Healthc Mater ; 12(19): e2203120, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058273

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Hipertermia Induzida , Humanos , Glioblastoma/patologia , Hipertermia Induzida/métodos , Resultado do Tratamento , Fenômenos Magnéticos , Linhagem Celular Tumoral , Neoplasias Encefálicas/terapia
4.
Nanoscale ; 11(1): 72-88, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30357214

RESUMO

In this study, taking into consideration the limitations of current treatments of glioblastoma multiforme, we fabricated a biomimetic lipid-based magnetic nanovector with a good loading capacity and a sustained release profile of the encapsulated chemotherapeutic drug, temozolomide. These nanostructures demonstrated an enhanced release after exposure to an alternating magnetic field, and a complete release of the encapsulated drug after the synergic effect of low pH (4.5), increased concentration of hydrogen peroxide (50 µM), and increased temperature due to the applied magnetic field. In addition, these nanovectors presented excellent specific absorption rate values (up to 1345 W g-1) considering the size of the magnetic component, rendering them suitable as potential hyperthermia agents. The presented nanovectors were progressively internalized in U-87 MG cells and in their acidic compartments (i.e., lysosomes and late endosomes) without affecting the viability of the cells, and their ability to cross the blood-brain barrier was preliminarily investigated using an in vitro brain endothelial cell-model. When stimulated with alternating magnetic fields (20 mT, 750 kHz), the nanovectors demonstrated their ability to induce mild hyperthermia (43 °C) and strong anticancer effects against U-87 MG cells (scarce survival of cells characterized by low proliferation rates and high apoptosis levels). The optimal anticancer effects resulted from the synergic combination of hyperthermia chronic stimulation and the controlled temozolomide release, highlighting the potential of the proposed drug-loaded lipid magnetic nanovectors for treatment of glioblastoma multiforme.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Hipertermia Induzida/métodos , Lipídeos/química , Nanopartículas de Magnetita/química , Barreira Hematoencefálica , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Liberação de Medicamentos , Endossomos/química , Humanos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Lisossomos/química , Magnetismo , Nanopartículas/química , Temperatura
5.
Langmuir ; 32(25): 6319-27, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27268249

RESUMO

The control of neuron-substrate adhesion has been always a challenge for fabricating neuron-based cell chips and in particular for multielectrode array (MEA) devices, which warrants the investigation of the electrophysiological activity of neuronal networks. The recent introduction of high-density chips based on the complementary metal oxide semiconductor (CMOS) technology, integrating thousands of electrodes, improved the possibility to sense large networks and raised the challenge to develop newly adapted functionalization techniques to further increase neuron electrode localization to avoid the positioning of cells out of the recording area. Here, we present a simple and straightforward chemical functionalization method that leads to the precise and exclusive positioning of the neural cell bodies onto modified electrodes and inhibits, at the same time, cellular adhesion in the surrounding insulator areas. Different from other approaches, this technique does not require any adhesion molecule as well as complex patterning technique such as µ-contact printing. The functionalization was first optimized on gold (Au) and silicon nitride (Si3N4)-patterned surfaces. The procedure consisted of the introduction of a passivating layer of hydrophobic silane molecules (propyltriethoxysilane [PTES]) followed by a treatment of the Au surface using 11-amino-1-undecanethiol hydrochloride (AT). On model substrates, well-ordered neural networks and an optimal coupling between a single neuron and single micrometric functionalized Au surface were achieved. In addition, we presented the preliminary results of this functionalization method directly applied on a CMOS-MEA: the electrical spontaneous spiking and bursting activities of the network recorded for up to 4 weeks demonstrate an excellent and stable neural adhesion and functional behavior comparable with what expected using a standard adhesion factor, such as polylysine or laminin, thus demonstrating that this procedure can be considered a good starting point to develop alternatives to the traditional chip coatings to provide selective and specific neuron-substrate adhesion.

6.
Langmuir ; 22(26): 11193-8, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154602

RESUMO

We have studied the vapor-phase deposition of L-cysteine on the Au(110) surface by means of synchrotron-based techniques. Relying on a comparison with previous X-ray photoemission analysis, we have assigned the fine structure of the C K-shell X-ray absorption spectra to the nonequivalent carbon bonds within the molecule. In particular, the C1s --> sigma* transition, where the sigma* state is mainly localized on the C-S bond, is shifted well below the ionization threshold, at approximately -5 eV from the characteristic pi* transition line related to carboxylic group. From the polarization dependence of the absorption spectra in the monolayer coverage range, the molecules are found to lay flat on the surface with both the C-S bond and the carboxylic group almost parallel to the surface. We performed in situ complementary surface X-ray diffraction, SXRD, measurements to probe the rearrangement of the Au atoms beneath the L-cysteine molecules. Since the early stage of deposition, L-cysteine domains are formed which display an intermediate fourfold symmetry along [001]. The self-assembly of molecules into paired rows, extending along the [1(-)10] direction, is fully compatible with our observations, as has been reported for the case of D-cysteine molecules grown on Au(110) [Kühnle, A. et al. Phys. Rev. Lett. 2004, 93, 086101.]


Assuntos
Cisteína/química , Ouro/química , Isótopos de Ouro/química , Espectrometria por Raios X/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA