Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395612

RESUMO

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
2.
FASEB J ; 35(2): e21216, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33230896

RESUMO

Obesity has emerged as a major risk factor for insulin resistance leading to the development of type 2 diabetes (T2D). The condition is characterized by high circulating levels of the adipose-derived hormone leptin and a state of chronic low-grade inflammation. Pro-inflammatory signaling in the hypothalamus is associated with a decrease of central leptin- and insulin action leading to impaired systemic glucose tolerance. Intriguingly, leptin not only regulates body weight and glucose homeostasis but also acts as a pro-inflammatory cytokine. Here we demonstrate that increasing leptin levels (62,5 µg/kg/d, PEGylated leptin) in mice fed a high-fat diet (HFD) exacerbated body weight gain and aggravated hypothalamic micro- as well as astrogliosis. In contrast, administration of a predetermined dose of a long-acting leptin antagonist (100 µg/kg/d, PESLAN) chosen to block excessive leptin signaling during diet-induced obesity (DIO) showed the opposite effect and significantly improved glucose tolerance as well as decreased the total number of microglia and astrocytes in the hypothalamus of mice fed HFD. These results suggest that high levels of leptin, such as in obesity, worsen HFD-induced micro-and astrogliosis, whereas the partial reduction of hyperleptinemia in DIO mice may have beneficial metabolic effects and improves hypothalamic gliosis.


Assuntos
Intolerância à Glucose/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Gliose/tratamento farmacológico , Gliose/metabolismo , Intolerância à Glucose/tratamento farmacológico , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/análogos & derivados , Leptina/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Polietilenoglicóis/química
3.
J Nutr ; 147(5): 770-780, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28356436

RESUMO

Background: The consumption of a Western-style diet (WSD) and high fructose intake are risk factors for metabolic diseases. The underlying mechanisms are largely unclear.Objective: To unravel the mechanisms by which a WSD and fructose promote metabolic disease, we investigated their effects on the gut microbiome and barrier function.Methods: Adult female C57BL/6J mice were fed a sugar- and fat-rich WSD or control diet (CD) for 12 wk and given access to tap water or fructose-supplemented water. The microbiota was analyzed with the use of 16S rRNA gene sequencing. Barrier function was studied with the use of permeability tests, and endotoxin, mucus thickness, and gene expressions were measured.Results: The WSD increased body weight gain but not endotoxin translocation compared with the CD. In contrast, high fructose intake increased endotoxin translocation 2.6- and 3.8-fold in the groups fed the CD + fructose and WSD + fructose, respectively, compared with the CD group. The WSD + fructose treatment also induced a loss of mucus thickness in the colon (-46%) and reduced defensin expression in the ileum and colon. The lactulose:mannitol ratio in the WSD + fructose mice was 1.8-fold higher than in the CD mice. Microbiota analysis revealed that fructose, but not the WSD, increased the Firmicutes:Bacteroidetes ratio by 88% for CD + fructose and 63% for WSD + fructose compared with the CD group. Bifidobacterium abundance was greater in the WSD mice than in the CD mice (63-fold) and in the WSD + fructose mice than in the CD + fructose mice (330-fold).Conclusions: The consumption of a WSD or high fructose intake differentially affects gut permeability and the microbiome. Whether these differences are related to the distinct clinical outcomes, whereby the WSD primarily promotes weight gain and high fructose intake causes barrier dysfunction, needs to be investigated in future studies.


Assuntos
Bactérias/efeitos dos fármacos , Dieta Ocidental , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Frutose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Animais , Bactérias/crescimento & desenvolvimento , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Colo/efeitos dos fármacos , Colo/metabolismo , Defensinas/metabolismo , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Água Potável/administração & dosagem , Endotoxinas/metabolismo , Comportamento Alimentar , Feminino , Firmicutes/efeitos dos fármacos , Firmicutes/crescimento & desenvolvimento , Frutose/administração & dosagem , Frutose/metabolismo , Íleo/efeitos dos fármacos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos Endogâmicos C57BL , Muco/metabolismo , Permeabilidade , RNA Ribossômico 16S , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA