RESUMO
The SARS-CoV-2 outbreak has infected a vast population across the world, causing more than 664 million cases and 6.7 million deaths by January 2023. Vaccination has been effective in reducing the most critical aftermath of this infection, but some issues are still present regarding re-infection prevention, effectiveness against variants, vaccine hesitancy and worldwide accessibility. Moreover, although several old and new antiviral drugs have been tested, we still lack robust and specific treatment modalities. It appears of utmost importance, facing this continuously growing pandemic, to focus on alternative practices grounded on firm scientific bases. In this article, we aim to outline a rigorous scientific background and propose complementary nutritional tools useful toward containment, and ultimately control, of SARS-CoV-2 infection. In particular, we review the mechanisms of viral entry and discuss the role of polyunsaturated fatty acids derived from α-linolenic acid and other nutrients in preventing the interaction of SARS-CoV-2 with its entry gateways. In a similar way, we analyze in detail the role of herbal-derived pharmacological compounds and specific microbial strains or microbial-derived polypeptides in the prevention of SARS-CoV-2 entry. In addition, we highlight the role of probiotics, nutrients and herbal-derived compounds in stimulating the immunity response.
RESUMO
The ethanolic extract from Hemidesmus indicus (Linn) (Apocynaceae) (Hie) was studied for its otoprotective effects in ex vivo rat organotypic model of gentamicin (GM) toxicity. In organ of Corti organotypic cultures (OC), GM can induce a fast dose-dependent apoptosis of hair cells (HC), both external and internal. We found that, after coadministration of GM and Hie to organotypic cultures, the extract was able to significantly counteract this toxic effect on HC, at the concentration of 25 and 50microg/ml. Interestingly, at these concentrations the extract was present in the cell medium at a concentration 1.6- and 3.3-fold lower than GM, suggesting its otoprotective activity could not merely due to an aspecific inhibition of GM entry. To support this hypothesis, we evaluated the amount of GM present in organotypic cultures after the coadministration of 1.5mg/ml GM and Hie, and found no significant reduction of GM uptake in the presence of 100microg/ml Hie. These data suggest the otoprotective action of Hie derives from specific inhibition of the apoptotic routine induced by GM treatment.