Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7876): 376-380, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471286

RESUMO

Pleistocene hominin dispersals out of, and back into, Africa necessarily involved traversing the diverse and often challenging environments of Southwest Asia1-4. Archaeological and palaeontological records from the Levantine woodland zone document major biological and cultural shifts, such as alternating occupations by Homo sapiens and Neanderthals. However, Late Quaternary cultural, biological and environmental records from the vast arid zone that constitutes most of Southwest Asia remain scarce, limiting regional-scale insights into changes in hominin demography and behaviour1,2,5. Here we report a series of dated palaeolake sequences, associated with stone tool assemblages and vertebrate fossils, from the Khall Amayshan 4 and Jubbah basins in the Nefud Desert. These findings, including the oldest dated hominin occupations in Arabia, reveal at least five hominin expansions into the Arabian interior, coinciding with brief 'green' windows of reduced aridity approximately 400, 300, 200, 130-75 and 55 thousand years ago. Each occupation phase is characterized by a distinct form of material culture, indicating colonization by diverse hominin groups, and a lack of long-term Southwest Asian population continuity. Within a general pattern of African and Eurasian hominin groups being separated by Pleistocene Saharo-Arabian aridity, our findings reveal the tempo and character of climatically modulated windows for dispersal and admixture.


Assuntos
Hominidae , Migração Humana/história , Animais , Antropologia , Arábia , Ásia , História Antiga , Paleontologia , Comportamento de Utilização de Ferramentas
2.
Nat Commun ; 11(1): 2250, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32418985

RESUMO

Explanations for the Upper Pleistocene extinction of megafauna from Sahul (Australia and New Guinea) remain unresolved. Extinction hypotheses have advanced climate or human-driven scenarios, in spite of over three quarters of Sahul lacking reliable biogeographic or chronologic data. Here we present new megafauna from north-eastern Australia that suffered extinction sometime after 40,100 (±1700) years ago. Megafauna fossils preserved alongside leaves, seeds, pollen and insects, indicate a sclerophyllous forest with heathy understorey that was home to aquatic and terrestrial carnivorous reptiles and megaherbivores, including the world's largest kangaroo. Megafauna species diversity is greater compared to southern sites of similar age, which is contrary to expectations if extinctions followed proposed migration routes for people across Sahul. Our results do not support rapid or synchronous human-mediated continental-wide extinction, or the proposed timing of peak extinction events. Instead, megafauna extinctions coincide with regionally staggered spatio-temporal deterioration in hydroclimate coupled with sustained environmental change.


Assuntos
Mudança Climática/história , Extinção Biológica , Fósseis , Animais , Austrália , Carnivoridade , Classificação , Clima , Dromaiidae , Ecossistema , Florestas , História Antiga , Humanos , Macropodidae , Marsupiais , Nova Guiné , Paleontologia , Datação Radiométrica , Répteis , Urânio
3.
PLoS One ; 8(6): e66221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776636

RESUMO

The Chinchilla Local Fauna is a diverse assemblage of both terrestrial and aquatic Pliocene vertebrates from the fluviatile Chinchilla Sand deposits of southeastern Queensland, Australia. It represents one of Australia's few but exceptionally rich Pliocene vertebrate localities, and as such is an important source of paleoecological data concerning Pliocene environmental changes and its effects on ecosystems. Prior inferences about the paleoenvironment of this locality made on the basis of qualitative observations have ranged from grassland to open woodland to wetland. Examination of the carbon and oxygen isotopes in the tooth enamel of marsupials from this site represents a quantitative method for inferring the paleoenvironments and paleoecology of the fossil fauna. Results from Chinchilla show that Protemnodon sp. indet. consumed both C3 and C4 photosynthesis plant types (mean δ(13)C = -14.5±2.0‰), and therefore probably occupied a mixed vegetation environment. Macropus sp. indet. from Chinchilla also consumed a mixed diet of both C3 and C4 plants, with more of a tendency for C4 plant consumption (mean δ(13)C = -10.3±2.3‰). Interestingly, their isotopic dietary signature is more consistent with tropical and temperate kangaroo communities than the sub-tropical communities found around Chinchilla today. Other genera sampled in this study include the extinct kangaroo Troposodon sp. indet. and the fossil diprotodontid Euryzygoma dunense each of which appear to have occupied distinct dietary niches. This study suggests that southeastern Queensland hosted a mosaic of tropical forests, wetlands and grasslands during the Pliocene and was much less arid than previously thought.


Assuntos
Ecossistema , Fósseis , Marsupiais , Dente/química , Animais , Isótopos de Carbono/análise , História Antiga , Isótopos de Oxigênio/análise , Paleontologia , Queensland , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 110(22): 8777-81, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23650401

RESUMO

Around 88 large vertebrate taxa disappeared from Sahul sometime during the Pleistocene, with the majority of losses (54 taxa) clearly taking place within the last 400,000 years. The largest was the 2.8-ton browsing Diprotodon optatum, whereas the ∼100- to 130-kg marsupial lion, Thylacoleo carnifex, the world's most specialized mammalian carnivore, and Varanus priscus, the largest lizard known, were formidable predators. Explanations for these extinctions have centered on climatic change or human activities. Here, we review the evidence and arguments for both. Human involvement in the disappearance of some species remains possible but unproven. Mounting evidence points to the loss of most species before the peopling of Sahul (circa 50-45 ka) and a significant role for climate change in the disappearance of the continent's megafauna.


Assuntos
Mudança Climática , Extinção Biológica , Vertebrados , Animais , Arqueologia , Austrália , História Antiga , Atividades Humanas/história , Humanos , Nova Guiné , Paleontologia/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA