Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 13(4): 937-949, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30523276

RESUMO

In many environments, toxic compounds restrict which microorganisms persist. However, in complex mixtures of inhibitory compounds, it is challenging to determine which specific compounds cause changes in abundance and prevent some microorganisms from growing. We focused on a contaminated aquifer in Oak Ridge, Tennessee, USA that has large gradients of pH and widely varying concentrations of uranium, nitrate, and many other inorganic ions. In the most contaminated wells, the microbial community is enriched in the Rhodanobacter genus. Rhodanobacter abundance is positively correlated with low pH and high concentrations of uranium and 13 other ions and we sought to determine which of these ions are selective pressures that favor the growth of Rhodanobacter over other taxa. Of these ions, low pH and high UO22+, Mn2+, Al3+, Cd2+, Zn2+, Co2+, and Ni2+ are both (a) selectively inhibitory of a Pseudomonas isolate from an uncontaminated well vs. a Rhodanobacter isolate from a contaminated well, and (b) reach toxic concentrations (for the Pseudomonas isolate) in the Rhodanobacter-dominated wells. We used mixtures of ions to simulate the groundwater conditions in the most contaminated wells and verified that few isolates aside from Rhodanobacter can tolerate these eight ions. These results clarify which ions are likely causal factors that impact the microbial community at this field site and are not merely correlated with taxonomic shifts. Furthermore, our general high-throughput approach can be applied to other environments, isolates, and conditions to systematically help identify selective pressures on microbial communities.


Assuntos
Gammaproteobacteria/metabolismo , Água Subterrânea/microbiologia , Metais/toxicidade , Microbiota , Pseudomonas/metabolismo , Biodegradação Ambiental , Gammaproteobacteria/classificação , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Água Subterrânea/química , Metais/metabolismo , Nitratos/análise , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Urânio/análise
2.
J Bacteriol ; 193(20): 5716-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21840973

RESUMO

We used high-resolution tiling microarrays and 5' RNA sequencing to identify transcripts in Desulfovibrio vulgaris Hildenborough, a model sulfate-reducing bacterium. We identified the first nucleotide position for 1,124 transcripts, including 54 proteins with leaderless transcripts and another 72 genes for which a major transcript initiates within the upstream protein-coding gene, which confounds measurements of the upstream gene's expression. Sequence analysis of these promoters showed that D. vulgaris prefers -10 and -35 boxes different from those preferred by Escherichia coli. A total of 549 transcripts ended at intrinsic (rho-independent) terminators, but most of the other transcripts seemed to have variable ends. We found low-level antisense expression of most genes, and the 5' ends of these transcripts mapped to promoter-like sequences. Because antisense expression was reduced for highly expressed genes, we suspect that elongation of nonspecific antisense transcripts is suppressed by transcription of the sense strand. Finally, we combined the transcript results with comparative analysis and proteomics data to make 505 revisions to the original annotation of 3,531 proteins: we removed 255 (7.5%) proteins, changed 123 (3.6%) start codons, and added 127 (3.7%) proteins that had been missed. Tiling data had higher coverage than shotgun proteomics and hence led to most of the corrections, but many errors probably remain. Our data are available at http://genomics.lbl.gov/supplemental/DvHtranscripts2011/.


Assuntos
Proteínas de Bactérias/genética , Desulfovibrio vulgaris/genética , Sulfatos/metabolismo , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Sequência de Bases , Desulfovibrio vulgaris/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA