Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1057566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589836

RESUMO

Introduction: Preterm birth is associated with an increased risk for impaired body weight gain. While it is known that in prematurity several somatic and environmental factors (e.g., endocrine factors, nutrition) modulate short- and long-term body weight gain, the contribution of potentially impaired body weight control in the brain remains elusive. We hypothesized that the structure of hypothalamic nuclei involved in body weight control is altered after preterm birth, with these alterations being associated with aberrant body weight development into adulthood. Materials and methods: We assessed 101 very preterm (i.e., <32 weeks of gestational age) and/or very low birth weight (i.e., <1500g; VP/VLBW) and 110 full-term born (FT) adults of the population-based Bavarian Longitudinal Study with T1-weighted MRI, deep learning-based hypothalamus subunit segmentation, and multiple body weight assessments from birth into adulthood. Results: Volumes of the whole hypothalamus and hypothalamus subunits relevant for body weight control were reduced in VP/VLBW adults and associated with birth variables (i.e., gestational age and intensity of neonatal treatment), body weight (i.e., weight at birth and adulthood), and body weight trajectories (i.e., trajectory slopes and cluster/types such as long-term catch-up growth). Particularly, VP/VLBW subgroups, whose individuals showed catch-up growth and/or were small for gestational age, were mostly associated with volumes of distinct hypothalamus subunits such as lateral or infundibular/ventromedial hypothalamus. Conclusion: Results demonstrate lower volumes of body weight control-related hypothalamus subunits after preterm birth that link with long-term body weight gain. Data suggest postnatal development of body weight -related hypothalamic nuclei in VP/VLBW individuals that corresponds with distinct body weight trajectories into adulthood.


Assuntos
Trajetória do Peso do Corpo , Nascimento Prematuro , Adulto , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Encéfalo , Hipotálamo
2.
PLoS One ; 15(9): e0238509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32870935

RESUMO

Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.


Assuntos
Bibenzilas/farmacologia , Dendrobium , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Bibenzilas/química , Células Cultivadas , Dendrobium/química , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fatores Imunológicos/química , Monócitos/imunologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fenantrenos/química , Extratos Vegetais/química
3.
Brain Behav ; 9(8): e01343, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31276317

RESUMO

INTRODUCTION: The volume of the striatal structures has been associated with disease progression in individuals with Huntington's disease (HD) from North America, Europe, and Australia. However, it is not known whether the gray matter (GM) volume in the striatum is also sensitive in differentiating vulnerability from disease manifestation in HD families from a South-American region known to have high incidence of the disease. In addition, the association of enlarged brain perivascular spaces (PVS) with cognitive, behavioral, and motor symptoms of HD is unknown. MATERIALS AND METHODS: We have analyzed neuroimaging indicators of global atrophy, PVS burden, and GM tissue volume in the basal ganglia and thalami, in relation to behavioral, motor, and cognitive scores, in 15 HD patients with overt disease manifestation and 14 first-degree relatives not genetically tested, which represent a vulnerable group, from the region of Magdalena, Colombia. RESULTS: Poor fluid intelligence as per the Raven's Standard Progressive Matrices was associated with global brain atrophy (p = 0.002) and PVS burden (p ≤ 0.02) in HD patients, where the GM volume in all subcortical structures, with the exception of the right globus pallidus, was associated with motor or cognitive scores. Only the GM volume in the right putamen was associated with envy and MOCA scores (p = 0.008 and 0.015 respectively) in first-degree relatives. CONCLUSION: Striatal GM volume, global brain atrophy and PVS burden may serve as differential indicators of disease manifestation in HD. The Raven's Standard Progressive Matrices could be a cognitive test worth to consider in the differentiation of vulnerability versus overt disease in HD.


Assuntos
Gânglios da Base/diagnóstico por imagem , Doença de Huntington/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Adolescente , Adulto , Colômbia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Brain Res ; 1307: 14-21, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-19840776

RESUMO

Lithium salts are mood-stabilizing agents with acute antimanic properties and proven efficacy in the long-term prevention of manic and depressive episodes. Furthermore, lithium augmentation is a well-established strategy to treat depressed patients, which do not respond to antidepressants alone. There is evidence to suggest that these effects of lithium are due to a synergism with central serotonin (5-HT) neurotransmission. In this study, we investigated the effects of lithium chloride (LiCl, 1 mM) on 5-HT uptake and release in primary serotonergic neurons from rat raphe nuclei. Short-term (8 h) and long-term (14 days) treatment with LiCl resulted in a 20% and 23% increase in 5-HT release, but neither influenced 5-HT uptake across the plasma membrane nor vesicular 5-HT uptake. In lithium-treated raphe neurons, the inhibition of 5-HT uptake by fluoxetine was unchanged. Using real-time reverse transcriptase polymerase chain reaction and Western blotting, we examined the effect of lithium on tryptophan hydroxylase 2 (TPH2) expression, the rate-limiting enzyme in brain 5-HT biosynthesis. Short-term lithium treatment resulted in a 45% decrease in tph2 mRNA expression and a 31% reduction of TPH2 protein levels, which was completely compensated after long-term treatment. Our results suggest that lithium can modify tph2 gene expression and 5-HT release in raphe neurons, providing new insight into the serotonergic mechanisms of action of lithium.


Assuntos
Adjuvantes Imunológicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Núcleos da Rafe/citologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Análise de Variância , Animais , Proteínas de Bactérias/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Fluoxetina/farmacologia , L-Lactato Desidrogenase/metabolismo , Neurônios/metabolismo , Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Análise de Regressão , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estreptolisinas/farmacologia , Fatores de Tempo , Trítio/metabolismo , Triptofano Hidroxilase/genética
5.
J Cereb Blood Flow Metab ; 27(3): 452-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16773141

RESUMO

Stroke leads to energy failure and subsequent neuronal cell loss. Creatine and phosphocreatine constitute a cellular energy buffering and transport system, and dietary creatine supplementation was shown to protect neurons in several models of neurodegeneration. Although creatine has recently been found to reduce infarct size after cerebral ischemia in mice, the mechanisms of neuroprotection remained unclear. We provide evidence for augmented cerebral blood flow (CBF) after stroke in creatine-treated mice using a magnetic resonance imaging (MRI)-based technique of CBF measurement (flow-sensitive alternating inversion recovery-MRI). Moreover, improved vasodilatory responses were detected in isolated middle cerebral arteries obtained from creatine-treated animals. After 3 weeks of dietary creatine supplementation, minor changes in brain creatine, phosphocreatine, adenosine triphosphate, adenosine diphosphate and adenosine monophosphate levels were detected, which did not reach statistical significance. However, we found a 40% reduction in infarct volume after transient focal cerebral ischemia. Our data suggest that creatine-mediated neuroprotection can occur independent of changes in the bioenergetic status of brain tissue, but may involve improved cerebrovascular function.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Creatina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Camundongos , Fosfocreatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA