Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2645: 251-261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202625

RESUMO

Magnetic hyperthermia is an innovative thermal therapy for the treatment of solid malignancies. This treatment approach utilizes magnetic nanoparticles that are stimulated by alternating magnetic fields to induce temperature elevations in tumor tissue, resulting in cell death. Magnetic hyperthermia is clinically approved for treating glioblastoma in Europe and is undergoing clinical evaluation for prostate cancer in the United States. Numerous studies have also demonstrated efficacy in other cancers, however, and its potential utility extends far beyond its current clinical indications. Despite this great promise, assessing the initial efficacy of magnetic hyperthermia in vitro is a complicated endeavor, with multiple hurdles worth considering, such as accurate thermal monitoring, accounting for nanoparticle interference, and a myriad of treatment controls that make robust experimental planning essential to evaluate treatment outcome. Presented here is an optimized magnetic hyperthermia treatment protocol to test the primary mechanism of cell death in vitro. This protocol can be applied to any cell line and ensures accurate temperature measurements, minimal nanoparticle interference, and controls for multiple factors that can influence experimental outcome.


Assuntos
Glioblastoma , Hipertermia Induzida , Nanopartículas de Magnetita , Masculino , Humanos , Hipertermia Induzida/métodos , Glioblastoma/terapia , Campos Magnéticos , Morte Celular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Nanopartículas de Magnetita/uso terapêutico
2.
Anal Bioanal Chem ; 415(15): 3007-3031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106123

RESUMO

A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.

3.
Nanomedicine ; 20: 101983, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30940505

RESUMO

In this paper we show that conjugation of magnetic nanoparticles (MNPs) with Gemcitabine and/or NucAnt (N6L) fostered their internalization into pancreatic tumor cells and that the coupling procedure did not alter the cytotoxic potential of the drugs. By treating tumor cells (BxPC3 and PANC-1) with the conjugated MNPs and magnetic hyperthermia (43 °C, 60 min), cell death was observed. The two pancreatic tumor cell lines showed different reactions against the combined therapy according to their intrinsic sensitivity against Gemcitabine (cell death, ROS production, ability to activate ERK 1/2 and JNK). Finally, tumors (e.g. 3 mL) could be effectively treated by using almost 4.2 × 105 times lower Gemcitabine doses compared to conventional therapies. Our data show that this combinatorial therapy might well play an important role in certain cell phenotypes with low readiness of ROS production. This would be of great significance in distinctly optimizing local pancreatic tumor treatments.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita/química , Neoplasias Pancreáticas/patologia , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Antígeno Ki-67/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Camundongos Nus , Peptídeos/farmacologia , Fenótipo , Fase S/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
4.
Breast Cancer Res ; 17: 66, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25968050

RESUMO

INTRODUCTION: Tumor cells can effectively be killed by heat, e.g. by using magnetic hyperthermia. The main challenge in the field, however, is the generation of therapeutic temperatures selectively in the whole tumor region. We aimed to improve magnetic hyperthermia of breast cancer by using innovative nanoparticles which display a high heating potential and are functionalized with a cell internalization and a chemotherapeutic agent to increase cell death. METHODS: The superparamagnetic iron oxide nanoparticles (MF66) were electrostatically functionalized with either Nucant multivalent pseudopeptide (N6L; MF66-N6L), doxorubicin (DOX; MF66-DOX) or both (MF66-N6LDOX). Their cytotoxic potential was assessed in a breast adenocarcinoma cell line MDA-MB-231. Therapeutic efficacy was analyzed on subcutaneous MDA-MB-231 tumor bearing female athymic nude mice. RESULTS: All nanoparticle variants showed an excellent heating potential around 500 W/g Fe in the alternating magnetic field (AMF, conditions: H=15.4 kA/m, f=435 kHz). We could show a gradual inter- and intracellular release of the ligands, and nanoparticle uptake in cells was increased by the N6L functionalization. MF66-DOX and MF66-N6LDOX in combination with hyperthermia were more cytotoxic to breast cancer cells than the respective free ligands. We observed a substantial tumor growth inhibition (to 40% of the initial tumor volume, complete tumor regression in many cases) after intratumoral injection of the nanoparticles in vivo. The proliferative activity of the remaining tumor tissue was distinctly reduced. CONCLUSION: The therapeutic effects of breast cancer magnetic hyperthermia could be strongly enhanced by the combination of MF66 functionalized with N6L and DOX and magnetic hyperthermia. Our approach combines two ways of tumor cell killing (magnetic hyperthermia and chemotherapy) and represents a straightforward strategy for translation into the clinical practice when injecting nanoparticles intratumorally.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Compostos Férricos/química , Hipertermia Induzida/métodos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Animais , Apoptose , Neoplasias da Mama/diagnóstico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Hipertermia Induzida/efeitos adversos , Nanopartículas Metálicas/efeitos adversos , Camundongos , Camundongos Nus , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Int J Nanomedicine ; 9: 3481-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25092978

RESUMO

Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo2 cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo2 cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.


Assuntos
Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Ácido Oleico/química , Ácido Oleico/toxicidade , Vacúolos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Células CACO-2 , Células HT29 , Proteínas de Choque Térmico/metabolismo , Humanos , Lipídeos , Ácido Oleico/farmacocinética , Tamanho da Partícula , Estresse Fisiológico/efeitos dos fármacos
6.
J Nanobiotechnology ; 9: 29, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801388

RESUMO

BACKGROUND: Nanomaterials such as SiO2 nanoparticles (SiO2NP) are finding increasing applications in the biomedical and biotechnological fields such as disease diagnostics, imaging, drug delivery, food, cosmetics and biosensors development. Thus, a mechanistic and systematic evaluation of the potential biological and toxic effects of SiO2NP becomes crucial in order to assess their complete safe applicability limits. RESULTS: In this study, human monocytic leukemia cell line THP-1 and human alveolar epithelial cell line A549 were exposed to a range of amorphous SiO2NP of various sizes and concentrations (0.01, 0.1 and 0.5 mg/ml). Key biological indicators of cellular functions including cell population density, cellular morphology, membrane permeability, lysosomal mass/pH and activation of transcription factor-2 (ATF-2) were evaluated utilizing quantitative high content screening (HCS) approach and biochemical techniques. Despite the use of extremely high nanoparticle concentrations, our findings showed a low degree of cytotoxicity within the panel of SiO2NP investigated. However, at these concentrations, we observed the onset of stress-related cellular response induced by SiO2NP. Interestingly, cells exposed to alumina-coated SiO2NP showed low level, and in some cases complete absence, of stress response and this was consistent up to the highest dose of 0.5 mg/ml. CONCLUSIONS: The present study demonstrates and highlights the importance of subtle biological changes downstream of primary membrane and endocytosis-associated phenomena resulting from high dose SiO2NP exposure. Increased activation of transcription factors, such as ATF-2, was quantitatively assessed as a function of i) human cell line specific stress-response, ii) SiO2NP size and iii) concentration. Despite the low level of cytotoxicity detected for the amorphous SiO2NP investigated, these findings prompt an in-depth focus for future SiO2NP-cell/tissue investigations based on the combined analysis of more subtle signalling pathways associated with accumulation mechanisms, which is essential for establishing the bio-safety of existing and new nanomaterials.


Assuntos
Nanopartículas/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/efeitos adversos , Estresse Fisiológico , Fator 2 Ativador da Transcrição/metabolismo , Óxido de Alumínio/efeitos adversos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA