Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 61(23): 10415-10439, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30130103

RESUMO

The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano- N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1 H-pyrrolo[2,3- b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclinical in vivo animal model upon oral administration.


Assuntos
Desenho de Fármacos , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Piridinas/administração & dosagem , Piridinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Piridinas/farmacocinética , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
2.
J Pharmacol Exp Ther ; 357(2): 423-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26907621

RESUMO

Racecadotril (acetorphan) is a neutral endopeptidase (NEP) inhibitor with known antidiarrheal activity in animals and humans; however, in humans, it suffers from shortcomings that might be improved with newer drugs in this class that have progressed to the clinic for nonenteric disease indications. To identify potentially superior NEP inhibitors with immediate clinical utility for diarrhea treatment, we compared their efficacy and pharmacologic properties in a rat intestinal hypersecretion model. Racecadotril and seven other clinical-stage inhibitors of NEP were obtained or synthesized. Enzyme potency and specificity were compared using purified peptidases. Compounds were orally administered to rats before administration of castor oil to induce diarrhea. Stool weight was recorded over 4 hours. To assess other pharmacologic properties, select compounds were orally administered to normal or castor oil-treated rats, blood and tissue samples collected at multiple time points, and active compound concentrations determined by mass spectroscopy. NEP enzyme activity was measured in tissue homogenates. Three previously untested clinical NEP inhibitors delayed diarrhea onset and reduced total stool output, with little or no effect on intestinal motility assessed by the charcoal meal test. Each was shown to be a potent, highly specific inhibitor of NEP. Each exhibited greater suppression of NEP activity in intestinal and nonintestinal tissues than did racecadotril and sustained this inhibition longer. These results suggest that newer clinical-stage NEP inhibitors originally developed for other indications may be directly repositioned for treatment of acute secretory diarrhea and offer advantages over racecadotril, such as less frequent dosing and potentially improved efficacy.


Assuntos
Antidiarreicos/uso terapêutico , Diarreia/tratamento farmacológico , Endopeptidases/metabolismo , Inibidores de Proteases/uso terapêutico , Tiorfano/análogos & derivados , Animais , Óleo de Rícino , Carvão Vegetal/farmacologia , Diarreia/induzido quimicamente , Relação Dose-Resposta a Droga , Fezes , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Tiorfano/uso terapêutico
3.
Nat Med ; 19(12): 1617-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24216753

RESUMO

Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are believed to be the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not been developed. We report that Cre under control of the promoter of Pdgfrb (Pdgfrb-Cre) inactivates loxP-flanked genes in mouse HSCs with high efficiency. We used this system to delete the gene encoding α(v) integrin subunit because various α(v)-containing integrins have been suggested as central mediators of fibrosis in multiple organs. Such depletion protected mice from carbon tetrachloride-induced hepatic fibrosis, whereas global loss of ß3, ß5 or ß6 integrins or conditional loss of ß8 integrins in HSCs did not. We also found that Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of the α(v) integrin subunit using this system was protective in other models of organ fibrosis, including pulmonary and renal fibrosis. Pharmacological blockade of α(v)-containing integrins by a small molecule (CWHM 12) attenuated both liver and lung fibrosis, including in a therapeutic manner. These data identify a core pathway that regulates fibrosis and suggest that pharmacological targeting of all α(v) integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases.


Assuntos
Integrina alfaV/metabolismo , Nefropatias/genética , Rim/patologia , Cirrose Hepática/genética , Fibrose Pulmonar/genética , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Feminino , Fibrose/genética , Marcação de Genes , Integrina alfaV/genética , Rim/metabolismo , Nefropatias/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA