Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Sci ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36831744

RESUMO

Background: Mindfulness trainings have shown promising results as treatment for behavioural symptoms in several pathologies. In addition, mindfulness protocols induced an improvement in memory and attention. Therefore, mindfulness could be an effective intervention for patients affected by Parkinson's disease (PD) and mild cognitive impairment (MCI), who are characterized by both behavioural and cognitive dysfunctions. Methods: We assessed differences in Montreal Cognitive Assessment (MoCA) scores and in Beck Depression Inventory II (BDI-II) scores in patients affected by PD and MCI enrolled in two different rehabilitation programs (an experimental vs. an usual structured program for cognitive rehabilitation). Participants in the experimental group (MILC-tr) underwent innovative rehabilitation program involving mindfulness and reminiscence activities. Assessments were performed before (T0) and at the end of the rehabilitation program (T1). Results: Friedman test showed a significant improvement between timepoints in MoCA global score (x2 = 4.000, p = 0.046), MoCA memory sub-scale score (x2 = 4.571, p = 0.033), and BDI-II cognitive and affective factors (x2 = 4.000, p = 0.046) only for patients in MILC-tr group. Mann-Whitney test showed a significant difference between group comparing differences in Δ scores between T0 and T1 in the MoCA memory sub-scale score (U = 190.50, p = 0.035). Conclusions: Mindfulness-based rehabilitation programs could be effective in patients affected by PD and MCI.

2.
J Neural Eng ; 18(6)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34678794

RESUMO

Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.


Assuntos
Estimulação Encefálica Profunda , Doenças do Sistema Nervoso , Biorretroalimentação Psicológica , Estimulação Encefálica Profunda/métodos , Humanos
3.
Front Neurol ; 12: 695910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552550

RESUMO

Background and Aims: Chronic pain is a complex clinical condition, often devastating for patients and unmanageable with pharmacological treatments. Converging evidence suggests that transcutaneous spinal Direct Current Stimulation (tsDCS) might represent a complementary therapy in managing chronic pain. In this randomized, double-blind and sham-controlled crossover study, we assessed tsDCS effects in chronic pain patients. Methods: Sixteen patients (aged 65.06 ± 16.16 years, eight women) with chronic pain of different etiology underwent sham and anodal tsDCS (anode over the tenth thoracic vertebra, cathode over the somatosensory cortical area: 2.5 mA, 20 min, 5 days for 1 week). As outcomes, we considered the Visual Analog Scale (VAS), the Neuropathic Pain Symptom Inventory (NPSI), and the components of the lower limb flexion reflex (LLFR), i.e., RIII threshold, RII latency and area, RIII latency and area, and flexion reflex (FR) total area. Assessments were conducted before (T0), immediately at the end of the treatment (T1), after 1 week (T2) and 1 month (T3). Results: Compared to sham, anodal tsDCS reduced RIII area at T2 (p = 0.0043) and T3 (p = 0.0012); similarly, FR total area was reduced at T3 (p = 0.03). Clinically, anodal tsDCS dampened VAS at T3 (p = 0.015), and NPSI scores at T1 (p = 0.0012), and T3 (p = 0.0015), whereas sham condition left them unchanged. Changes in VAS and NPSI scores linearly correlated with the reduction in LLFR areas (p = 0.0004). Conclusions: Our findings suggest that tsDCS could modulate nociceptive processing and pain perception in chronic pain syndromes.

4.
J Spinal Cord Med ; 44(1): 46-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508408

RESUMO

Objective: Hereditary spastic paraplegia (HSP) represents a heterogeneous group of neurodegenerative diseases characterized by progressive spasticity and lower limb weakness. We assessed the effects of transcutaneous spinal direct current stimulation (tsDCS) in HSP.Design: A double-blind, randomized, crossover and sham-controlled study.Setting: Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan.Participants: eleven patients with HSP (six men, mean age ± SD: 37.3 ± 8.1 years), eight affected by spastin/SPG4,1 by atlastin1/SPG3a, 1 by paraplegin/SPG7 and 1 by ZFYVE26/SPG15.Interventions: tsDCS (anodal or sham, 2.0 mA, 20', five days) delivered over the thoracic spinal cord (T10-T12).Outcome measures: Motor-evoked potentials (MEPs), the H-reflex (Hr), F-waves, the Ashworth scale for clinical spasticity, the Five Minutes Walking test and the Spastic Paraplegia Rating Scale (SPRS) were assessed. Patients were evaluated before tsDCS (T0), at the end of the stimulation (T1), after one week (T2), one month (T3) and two months (T4).Results: The score of the Ashworth scale improved in the anodal compared with sham group, up to two months following the end of stimulation (T1, P = .0137; T4, P = .0244), whereas the Five Minutes Walking test and SPRS did not differ between the two groups. Among neurophysiological measures, both anodal and sham tsDCS left Hr, F-waves and MEPs unchanged over time.Conclusions: Anodal tsDCS significantly decreases spasticity and might be a complementary strategy for the treatment of spasticity in HSP.


Assuntos
Paraplegia Espástica Hereditária , Traumatismos da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Estudos Cross-Over , Potencial Evocado Motor , Humanos , Masculino , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/terapia
5.
Front Med (Lausanne) ; 6: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231653

RESUMO

Health data autonomously collected by users are presently considered as largely beneficial for wellness, prevention, disease management, as well as clinical research, especially when longitudinal, chronic, home-based monitoring is needed. However, data quality and reliability are the main barriers to overcome, in order to exploit such potential. To this end, we designed, implemented, and tested a system to integrate patient-generated personally collected health data into the clinical research data workflow, using a standards-based architecture that ensures the fulfillment of the major requirements for digital data in clinical studies. The system was tested in a clinical investigation for the optimization of deep brain stimulation (DBS) therapy in patients with Parkinson's disease that required both the collection of patient-generated data and of clinical and neurophysiological data. The validation showed that the implemented system was able to provide a reliable solution for including the patient as direct digital data source, ensuring reliability, integrity, security, attributability, and auditability of data. These results suggest that personally collected health data can be used as a reliable data source in longitudinal clinical research, thus improving holistic patient's personal assessment and monitoring.

6.
J Neurosci Methods ; 254: 18-26, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26213216

RESUMO

BACKGROUND: Transcutaneous spinal Direct Current Stimulation (tsDCS) is a noninvasive technique based on the application of weak electrical currents over spinal cord. NEW METHOD: We studied the effects of tsDCS on interhemispheric motor connectivity and visual processing by evaluating changes in ipsilateral Silent Period (iSP), Transcallosal Conduction Time (TCT) and hemifield Visual Evoked Potentials (hVEPs), before (T0) and at a different intervals following sham, anodal and cathodal tsDCS (T9-T11 level, 2.0 mA, 20'). Motor Evoked Potentials (MEPs) were recorded from abductor pollicis brevis (APB), abductor hallucis (AH) and deltoid muscles. hVEPs were recorded bilaterally by reversal of a horizontal square wave grating with the display positioned in the right hemifield. RESULTS: Anodal tsDCS increased TCT (p < 0.001) and the interhemispheric delay for both the main VEP components (N1: p = 0.0003; P1: p < 0.0001), dampening at the same time iSP duration (APB: p < 0.0001; AH: p = 0.0005; deltoid: p < 0.0001), while cathodal stimulation elicited opposite effects (p < 0.0001). DISCUSSION: tsDCS modulates interhemispheric processing in a polarity-specific manner, with anodal stimulation leading to a functional disconnection between hemispheres. tsDCS would be a new promising therapeutic tool in managing a number of human diseases characterized by an impaired interhemispheric balance, or an early rehabilitation strategy in patients with acute brain lesions, when other non-invasive brain stimulation techniques (NIBS) are not indicated due to safety concerns.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica/métodos , Lateralidade Funcional/fisiologia , Atividade Motora/fisiologia , Medula Espinal/fisiologia , Percepção Visual/fisiologia , Adulto , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Distribuição Aleatória
7.
J Neurophysiol ; 114(1): 440-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925328

RESUMO

This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.


Assuntos
Encéfalo/fisiologia , Tratos Piramidais/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Reflexo H/fisiologia , Humanos , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/fisiologia , Fatores de Tempo , Estimulação Magnética Transcraniana/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Extremidade Superior/fisiologia
9.
Neurosci Lett ; 578: 75-9, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24970753

RESUMO

Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries.


Assuntos
Recrutamento Neurofisiológico , Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Vértebras Cervicais , Eletrodos , Feminino , Humanos , Masculino , Vértebras Torácicas , Adulto Jovem
10.
J Physiol ; 592(16): 3345-69, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24907311

RESUMO

Two neuromodulatory techniques based on applying direct current (DC) non-invasively through the skin, transcranial cerebellar direct current stimulation (tDCS) and transcutaneous spinal DCS, can induce prolonged functional changes consistent with a direct influence on the human cerebellum and spinal cord. In this article we review the major experimental works on cerebellar tDCS and on spinal tDCS, and their preliminary clinical applications. Cerebellar tDCS modulates cerebellar motor cortical inhibition, gait adaptation, motor behaviour, and cognition (learning, language, memory, attention). Spinal tDCS influences the ascending and descending spinal pathways, and spinal reflex excitability. In the anaesthetised mouse, DC stimulation applied under the skin along the entire spinal cord may affect GABAergic and glutamatergic systems. Preliminary clinical studies in patients with cerebellar disorders, and in animals and patients with spinal cord injuries, have reported beneficial effects. Overall the available data show that cerebellar tDCS and spinal tDCS are two novel approaches for inducing prolonged functional changes and neuroplasticity in the human cerebellum and spinal cord, and both are new tools for experimental and clinical neuroscientists.


Assuntos
Cerebelo/fisiologia , Estimulação Encefálica Profunda/métodos , Terapia por Estimulação Elétrica/métodos , Medula Espinal/fisiologia , Estimulação Magnética Transcraniana/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Humanos
11.
Clin Neurophysiol ; 125(11): 2260-2270, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24784477

RESUMO

OBJECTIVE: Non-invasive transcutaneous spinal direct current stimulation (tsDCS) induces changes in spinal cord function in humans. Nonetheless, the current density (J) spatial distributions generated by tsDCS are unknown. This work aimed to estimate the J distributions in the spinal cord during tsDCS. METHODS: Computational electromagnetics techniques were applied to realistic human models, based on high-resolution MRI of healthy volunteers (a 26-years-old female adult model "Ella"; a 14years-old male adolescent model "Louis"; an 11years old female adolescent model "Billie"). Three electrode montages were modeled. In all cases, the anode was always over the spinal process of the tenth thoracic vertebra and the cathode was placed: (A) above the right arm; (B) over the umbilicus; (C) over Cz. The injected current was 3mA. The electrodes were conductors within rectangular sponges. RESULTS: Despite inter-individual differences, the J tends to be primarily directed longitudinally along the spinal cord and cauda equina with the region of higher amplitude influenced by the reference electrode position; on transversal sections, the J amplitude distributions were quite uniform. CONCLUSIONS: Our modeling approach reveals that the J generated by tsDCS reaches the spinal cord, with a current spread also to the muscle on the back and the spinal nerve. SIGNIFICANCE: This study is a first step in better understanding the mechanisms underlying tsDCS.


Assuntos
Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adolescente , Adulto , Criança , Eletrodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos
12.
Int J Neural Syst ; 24(2): 1430006, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24475898

RESUMO

Transcranial direct current stimulation (tDCS) was recently proposed for the treatment of epilepsy. However, the electrode arrangement for this case is debated. This paper analyzes the influence of the position of the anodal electrode on the electric field in the brain. The simulation shows that moving the anode from scalp to shoulder does influence the electric field not only in the cortex, but also in deeper brain regions. The electric field decreases dramatically in the brain area without epileptiform activity.


Assuntos
Encéfalo/fisiopatologia , Simulação por Computador , Terapia por Estimulação Elétrica/métodos , Epilepsias Parciais/fisiopatologia , Epilepsias Parciais/terapia , Córtex Cerebral/fisiopatologia , Criança , Eletrodos , Feminino , Humanos , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Couro Cabeludo , Ombro
13.
Clin Neurophysiol ; 125(3): 577-84, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24176297

RESUMO

OBJECTIVE: Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. METHODS: Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. RESULTS: The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. CONCLUSIONS: Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. SIGNIFICANCE: Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects.


Assuntos
Cerebelo/fisiologia , Estimulação Elétrica/métodos , Memória de Curto Prazo , Modelos Neurológicos , Adulto , Tronco Encefálico/fisiologia , Terapia por Estimulação Elétrica , Eletricidade , Eletrodos , Feminino , Humanos , Masculino , Lobo Occipital/fisiologia
14.
NeuroRehabilitation ; 34(1): 121-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24284464

RESUMO

BACKGROUND: The debilitating fatigue that patients with multiple sclerosis (MS) commonly experience during day-to-day living activities responds poorly to current therapeutic options. Direct currents (DC) delivered through the scalp (transcranial DC stimulation or tDCS) at weak intensities induce changes in motor cortical excitability that persist for almost an hour after current offset and depend on current polarity. tDCS successfully modulates cortical excitability in various clinical disorders but no information is available for MS related fatigue. OBJECTIVE: In this study we aimed to assess fatigue symptom after five consecutive sessions of anodal tDCS applied over the motor cortex in patients with MS. METHODS: We enrolled 25 patients with MS all of whom experienced fatigue. We delivered anodal and sham tDCS in random order in two separate experimental sessions at least 1 month apart. The stimulating current was delivered for 15 minutes once a day for 5 consecutive days. In each session the Fatigue Impact Scale (FIS) and the Back Depression Inventory (BDI) were administered before the treatment (baseline), immediately after treatment on day five (T1), one week (T2) and three weeks (T3) after the last tDCS session. RESULTS: All patients tolerated tDCS well without adverse events. The fatigue score significantly decreased after anodal tDCS in 65% of the patients (responders). After patients received tDCS for 5 days their FIS scores improved by about 30% and the tDCS-induced benefits persisted at T2 and T3. CONCLUSION: Our preliminary findings suggest that anodal tDCS applied over the motor cortex, could improve fatigue in most patients with MS.


Assuntos
Terapia por Estimulação Elétrica , Fadiga/terapia , Esclerose Múltipla/terapia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
15.
Cerebellum ; 13(1): 109-12, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24078482

RESUMO

The excitability of the motor areas of the cerebral cortex is reduced in ataxia. Since transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique able to increase the cortical excitability, we assessed the effect of anodal tDCS over the motor cortex in three patients with ataxia. A clinical evaluation, a video-taped SARA rating scale and a gait analysis with cinematic parameters, were performed pre- and post-sham and anodal tDCS cycle. The full cycle was composed by five consecutive constant current sessions of stimulation. Anodal tDCS (2.0 mA, 20 min,max current density: 0.0278 mA/cm2, max total charge:0.033 C/cm2) was performed on the M1 area of the most affected side. The contralateral primary motor cortex underwent cathodal stimulation (2.0 mA, 20 min, max current density:0.0278 mA/cm2, max total charge: 0.033 C/cm2). After anodal tDCS, gait analysis revealed an improvement of the symmetry of step execution and reduction of base-width lasting 30 days associated to patients' perception of amelioration. No relevant changes were found after sham stimulation. Our results suggest tDCS can improve gait symmetry in patients with ataxia for a short-term period. Future researches are needed in order to standardize time, amplitude, and area of stimulation in order to reach a long lasting effect on cerebellar ataxia.


Assuntos
Ataxia Cerebelar/terapia , Terapia por Estimulação Elétrica , Córtex Motor , Adulto , Fenômenos Biomecânicos , Ataxia Cerebelar/complicações , Terapia por Estimulação Elétrica/métodos , Feminino , Marcha Atáxica/etiologia , Marcha Atáxica/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Fatores de Tempo , Resultado do Tratamento
16.
Artigo em Inglês | MEDLINE | ID: mdl-23274503

RESUMO

The findings for implicit (procedural) learning impairment in major depression are mixed. We investigated this issue using transcranial direct current stimulation (tDCS), a method that non-invasively increases/decreases cortical activity. Twenty-eight age- and gender-matched, antidepressant-free depressed subjects received a single-session of active/sham tDCS. We used a bifrontal setup - anode and cathode over the left and the right dorsolateral prefrontal cortex (DLPFC), respectively. The probabilistic classification-learning (PCL) task was administered before and during tDCS. The percentage of correct responses improved during sham; although not during active tDCS. Procedural or implicit learning acquisition between tasks also occurred only for sham. We discuss whether DLPFC activation decreased activity in subcortical structures due to the depressive state. The deactivation of the right DLPFC by cathodal tDCS can also account for our results. To conclude, active bifrontal tDCS prevented implicit learning in depressive patients. Further studies with different tDCS montages and in other samples are necessary.


Assuntos
Transtorno Depressivo Maior/terapia , Terapia por Estimulação Elétrica , Lobo Frontal/fisiologia , Aprendizagem/fisiologia , Adulto , Antidepressivos/uso terapêutico , Benzodiazepinas/metabolismo , Transtorno Depressivo Maior/psicologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Neostriado/fisiologia , Rede Nervosa/fisiologia , Tempo de Reação/fisiologia
18.
J Neurol Neurosurg Psychiatry ; 84(8): 832-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23138766

RESUMO

Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique inducing prolonged brain excitability changes and promoting cerebral plasticity, is a promising option for neurorehabilitation. Here, we review progress in research on tDCS and language functions and on the potential role of tDCS in the treatment of post-stroke aphasia. Currently available data suggest that tDCS over language-related brain areas can modulate linguistic abilities in healthy individuals and can improve language performance in patients with aphasia. Whether the results obtained in experimental conditions are functionally important for the quality of life of patients and their caregivers remains unclear. Despite the fact that important variables are yet to be determined, tDCS combined with rehabilitation techniques seems a promising therapeutic option for aphasia.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica , Idioma , Adulto , Idoso , Afasia/psicologia , Afasia/terapia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Lobo Temporal/fisiologia , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-22651961

RESUMO

Major depressive disorder (MDD) is a common psychiatric illness, with 6-12% lifetime prevalence. It is also among the five most disabling diseases worldwide. Current pharmacological treatments, although relatively effective, present important side effects that lead to treatment discontinuation. Therefore, novel treatment options for MDD are needed. Here, we discuss the recent advancements of one new neuromodulatory technique--transcranial direct current stimulation (tDCS)--that has undergone intensive research over the past decade with promising results. tDCS is based on the application of weak, direct electric current over the scalp, leading to cortical hypo- or hyper-polarization according to the specified parameters. Recent studies have shown that tDCS is able to induce potent changes in cortical excitability as well as to elicit long-lasting changes in brain activity. Moreover, tDCS is a technique with a low rate of reported side effects, relatively easy to apply and less expensive than other neuromodulatory techniques--appealing characteristics for clinical use. In the past years, 4 of 6 phase II clinical trials and one recent meta-analysis have shown positive results in ameliorating depression symptoms. tDCS has some interesting, unique aspects such as noninvasiveness and low rate of adverse effects, being a putative substitutive/augmentative agent for antidepressant drugs, and low-cost and portability, making it suitable for use in clinical practice. Still, further phase II and phase III trials are needed as to better clarify tDCS role in the therapeutic arsenal of MDD.


Assuntos
Encéfalo/fisiologia , Ensaios Clínicos como Assunto , Transtorno Depressivo Maior/terapia , Terapia por Estimulação Elétrica/psicologia , Pesquisa Translacional Biomédica , Animais , Transtorno Depressivo Maior/fisiopatologia , Terapia por Estimulação Elétrica/efeitos adversos , Terapia por Estimulação Elétrica/métodos , Previsões , Humanos
20.
Cogn Neuropsychiatry ; 16(6): 481-504, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21607884

RESUMO

INTRODUCTION. The Charcot and Bernard case of visual imagery, Monsieur X, is a classic case in the history of neuropsychology. Published in 1883, it has been considered the first case of visual imagery loss due to brain injury. Also in recent times a neurological valence has been given to it. However, the presence of analogous cases of loss of visual imagery in the psychiatric field have led us to hypothesise functional origins rather than organic. METHODS. In order to assess the validity of such an inference, we have compared the symptomatology of Monsieur X with that found in cases of loss of visual mental images, both psychiatric and neurological, presented in literature. RESULTS. The clinical findings show strong assonances of the Monsieur X case with the symptoms manifested over time by the patients with functionally based loss of visual imagery. CONCLUSION. Although Monsieur X's damage was initially interpreted as neurological, reports of similar symptoms in the psychiatric field lead us to postulate a functional cause for his impairment as well.


Assuntos
Imaginação/fisiologia , Transtornos Mentais/psicologia , Neuropsicologia/história , História do Século XIX , Humanos , Masculino , Transtornos da Memória/psicologia , Processos Mentais/fisiologia , Pessoa de Meia-Idade , Reconhecimento Psicológico/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA