Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
2.
Int J Syst Evol Microbiol ; 70(4): 2440-2448, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32100697

RESUMO

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.


Assuntos
Pectobacterium/classificação , Filogenia , Solanum tuberosum/microbiologia , Sistemas de Secreção Tipo III , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Finlândia , Países Baixos , Pectobacterium/isolamento & purificação , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Polônia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Virulência
3.
Methods Mol Biol ; 1302: 1-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981242

RESUMO

Blackleg and soft rot of potato, caused by Pectobacterium and Dickeya spp., are major production constraints in many potato-growing regions of the world. Despite advances in our understanding of the causative organisms, disease epidemiology, and control, blackleg remains the principal cause of down-grading and rejection of potato seed in classification schemes across Northern Europe and many other parts of the world. Although symptom recognition is relatively straightforward and is applied universally in seed classification schemes, attributing disease to a specific organism is problematic and can only be achieved through the use of diagnostics. Similarly as disease spread is largely through the movement of asymptomatically infected seed tubers and, possibly in the case of Dickeya spp., irrigation waters, accurate and sensitive diagnostics are a prerequisite for detection. This chapter describes the diagnostic pathway that can be applied to identify the principal potato pathogens within the genera Pectobacterium and Dickeya.


Assuntos
DNA Bacteriano/análise , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Pectobacterium/genética , Pectobacterium/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Solanum tuberosum/microbiologia , DNA Bacteriano/genética , Enterobacteriaceae/patogenicidade , Pectobacterium/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Tubérculos/química , Tubérculos/microbiologia , Especificidade da Espécie
4.
Int J Syst Evol Microbiol ; 64(Pt 3): 768-774, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24225027

RESUMO

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.


Assuntos
Enterobacteriaceae/classificação , Pectinas/metabolismo , Filogenia , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Europa (Continente) , Ácidos Graxos/química , Genes Bacterianos , Indóis/metabolismo , Israel , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Plant J ; 76(3): 530-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937694

RESUMO

RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.


Assuntos
Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Produtos Agrícolas/genética , Genes de Plantas , Família Multigênica , Phytophthora infestans/genética , Imunidade Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum
6.
BMC Genomics ; 13: 75, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336098

RESUMO

BACKGROUND: The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. RESULTS: As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. CONCLUSIONS: By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.


Assuntos
Proteínas de Plantas/genética , Solanum tuberosum/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Mapeamento Cromossômico , Análise por Conglomerados , Genoma de Planta , Leucina/química , Dados de Sequência Molecular , Proteínas de Plantas/análise , Solanum tuberosum/classificação
7.
New Phytol ; 191(3): 763-776, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21539575

RESUMO

• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.


Assuntos
Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Polimorfismo Genético/genética , Proteínas/metabolismo , Solanum tuberosum/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , Regulação da Expressão Gênica , Genes Dominantes/genética , Genes de Plantas/genética , Dados de Sequência Molecular , Phytophthora infestans/genética , Phytophthora infestans/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estrutura Terciária de Proteína , Proteínas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
PLoS Pathog ; 4(6): e1000093, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18566662

RESUMO

Quorum sensing (QS) in vitro controls production of plant cell wall degrading enzymes (PCWDEs) and other virulence factors in the soft rotting enterobacterial plant pathogen Pectobacterium atrosepticum (Pba). Here, we demonstrate the genome-wide regulatory role of QS in vivo during the Pba-potato interaction, using a Pba-specific microarray. We show that 26% of the Pba genome exhibited differential transcription in a QS (expI-) mutant, compared to the wild-type, suggesting that QS may make a greater contribution to pathogenesis than previously thought. We identify novel components of the QS regulon, including the Type I and II secretion systems, which are involved in the secretion of PCWDEs; a novel Type VI secretion system (T6SS) and its predicted substrates Hcp and VgrG; more than 70 known or putative regulators, some of which have been demonstrated to control pathogenesis and, remarkably, the Type III secretion system and associated effector proteins, and coronafacoyl-amide conjugates, both of which play roles in the manipulation of plant defences. We show that the T6SS and a novel potential regulator, VirS, are required for full virulence in Pba, and propose a model placing QS at the apex of a regulatory hierarchy controlling the later stages of disease progression in Pba. Our findings indicate that QS is a master regulator of phytopathogenesis, controlling multiple other regulators that, in turn, co-ordinately regulate genes associated with manipulation of host defences in concert with the destructive arsenal of PCWDEs that manifest the soft rot disease phenotype.


Assuntos
Genoma Bacteriano , Pectobacterium/patogenicidade , Doenças das Plantas/microbiologia , Percepção de Quorum/genética , Perfilação da Expressão Gênica , Genômica/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Pectobacterium/genética , Solanum tuberosum/microbiologia , Virulência/genética
9.
Nature ; 450(7166): 115-8, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17914356

RESUMO

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


Assuntos
Proteínas de Algas/química , Proteínas de Algas/metabolismo , Nicotiana/metabolismo , Phytophthora/metabolismo , Sinais Direcionadores de Proteínas , Solanum tuberosum/metabolismo , Alanina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Biologia Computacional , Pectobacterium/genética , Phytophthora/química , Transporte Proteico , Pseudomonas syringae/genética , Solanum tuberosum/microbiologia , Nicotiana/microbiologia
10.
Microbiology (Reading) ; 153(Pt 3): 747-59, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322195

RESUMO

Phytophthora infestans is the cause of late blight, a devastating and re-emerging disease of potato. Significant advances have been made in understanding the biology of P. infestans, and in the development of molecular tools to study this oomycete. Nevertheless, little is known about the molecular bases of the establishment or development of disease in this hemibiotrophic pathogen. Suppression subtractive hybridization (SSH) was used to generate cDNA enriched for sequences upregulated during potato infection. To identify pathogen-derived cDNAs, and eliminate host sequences from further study, SSH cDNA was hybridized to a P. infestans bacterial artificial chromosome library. A new gene family was identified called Pinci1, comprising more than 400 members arranged in clusters of up to nine copies throughout the P. infestans draft genome sequence. Real-time RT-PCR was used to quantify the expression of five classes of transcript within the family, relative to the constitutively expressed PiactA gene, and it revealed them to be significantly upregulated from 12 to 33 h post-inoculation, a period defining the biotrophic phase of infection. Computational analysis of sequences suggested that transcripts were non-protein coding, and this was confirmed by transient expression of FLAG-tagged ORFs in P. infestans.


Assuntos
DNA de Algas/genética , Regulação da Expressão Gênica , Phytophthora/genética , RNA não Traduzido/genética , Solanum tuberosum/microbiologia , Sequência de Bases , DNA de Algas/química , Dosagem de Genes , Perfilação da Expressão Gênica , Biblioteca Gênica , Genoma , Dados de Sequência Molecular , Phytophthora/citologia , RNA de Algas/análise , RNA de Algas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Trends Microbiol ; 14(1): 8-11, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16356717

RESUMO

Oomycetes cause devastating plant diseases of global importance, yet little is known about the molecular basis of their pathogenicity. Recently, the first oomycete effector genes with cultivar-specific avirulence (AVR) functions were identified. Evidence of diversifying selection in these genes and their cognate plant host resistance genes suggests a molecular "arms race" as plants and oomycetes attempt to achieve and evade detection, respectively. AVR proteins from Hyaloperonospora parasitica and Phytophthora infestans are detected in the plant host cytoplasm, consistent with the hypothesis that oomycetes, as is the case with bacteria and fungi, actively deliver effectors inside host cells. The RXLR amino acid motif, which is present in these AVR proteins and other secreted oomycete proteins, is similar to a host-cell-targeting signal in virulence proteins of malaria parasites (Plasmodium species), suggesting a conserved role in pathogenicity.


Assuntos
Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Motivos de Aminoácidos , Arabidopsis , Oomicetos/genética , Oomicetos/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum
12.
Proc Natl Acad Sci U S A ; 102(21): 7766-71, 2005 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-15894622

RESUMO

The oomycete Phytophthora infestans causes late blight, the potato disease that precipitated the Irish famines in 1846 and 1847. It represents a reemerging threat to potato production and is one of >70 species that are arguably the most devastating pathogens of dicotyledonous plants. Nevertheless, little is known about the molecular bases of pathogenicity in these algae-like organisms or of avirulence molecules that are perceived by host defenses. Disease resistance alleles, products of which recognize corresponding avirulence molecules in the pathogen, have been introgressed into the cultivated potato from a wild species, Solanum demissum, and R1 and R3a have been identified. We used association genetics to identify Avr3a and show that it encodes a protein that is recognized in the host cytoplasm, where it triggers R3a-dependent cell death. Avr3a resides in a region of the P. infestans genome that is colinear with the locus containing avirulence gene ATR1(NdWsB) in Hyaloperonospora parasitica, an oomycete pathogen of Arabidopsis. Remarkably, distances between conserved genes in these avirulence loci were often similar, despite intervening genomic variation. We suggest that Avr3a has undergone gene duplication and that an allele evading recognition by R3a arose under positive selection.


Assuntos
Proteínas de Algas/genética , Apoptose/genética , Phytophthora/genética , Phytophthora/patogenicidade , Solanum tuberosum/microbiologia , Agrobacterium tumefaciens , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biolística , Cromossomos Artificiais Bacterianos , Citoplasma/metabolismo , Primers do DNA , Duplicação Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Potexvirus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Solanum tuberosum/genética , Sintenia/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA