Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955518

RESUMO

Both monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) play important roles in lipid metabolism, and diets enriched with either of these two fatty acids are associated with decreased cardiovascular risk. Conventional soybean oil (CSO), a common food ingredient, predominantly contains linoleic acid (LA; C18:2), a n-6 PUFA. Recently, a modified soybean oil (MSO) enriched in oleic acid (C18:1), a n-9 MUFA, has been developed, because of its improved chemical stability to oxidation. However, the effect of the different dietary soybean oils on cardiovascular disease remains unknown. To test whether diets rich in CSO versus MSO would attenuate atherosclerosis development, LDL receptor knock-out (LDLR-KO) mice were fed a Western diet enriched in saturated fatty acids (control), or a Western diet supplemented with 5% (w/w) LA-rich CSO or high-oleic MSO for 12 weeks. Both soybean oils contained a similar amount of linolenic acid (C18:3 n-3). The CSO diet decreased plasma lipid levels and the cholesterol content of VLDL and LDL by approximately 18% (p < 0.05), likely from increased hepatic levels of PUFA, which favorably regulated genes involved in cholesterol metabolism. The MSO diet, but not the CSO diet, suppressed atherosclerotic plaque size compared to the Western control diet (Control Western diet: 6.5 ± 0.9%; CSO diet: 6.4 ± 0.7%; MSO diet: 4.0 ± 0.5%) (p < 0.05), independent of plasma lipid level changes. The MSO diet also decreased the ratio of n-6/n-3 PUFA in the liver (Control Western diet: 4.5 ± 0.2; CSO diet: 6.1 ± 0.2; MSO diet: 2.9 ± 0.2) (p < 0.05), which correlated with favorable hepatic gene expression changes in lipid metabolism and markers of systemic inflammation. In conclusion, supplementation of the Western diet with MSO, but not CSO, reduced atherosclerosis development in LDLR-KO mice independent of changes in plasma lipids.


Assuntos
Aterosclerose , Ácidos Graxos Ômega-3 , Animais , Colesterol/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico , Camundongos , Camundongos Knockout , Ácido Oleico , Receptores de LDL/genética , Óleo de Soja
2.
Atherosclerosis ; 262: 31-38, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28486149

RESUMO

BACKGROUND AND AIMS: Concentrated fish oils, containing a mixture of long-chain monounsaturated fatty acids (LCMUFA) with aliphatic chains longer than 18 C atoms (i.e., C20:1 and C22:1), have been shown to attenuate atherosclerosis development in mouse models. It is not clear, however, how individual LCMUFA isomers may act on atherosclerosis. METHODS: In the present study, we used saury fish oil-derived concentrates enriched in either C20:1 or C22:1 isomer fractions to investigate their individual effect on atherosclerosis and lipoprotein metabolism. LDLR-deficient (LDLr-/-) mice were fed a Western diet supplemented with 5% (w/w) of either C20:1 or C22:1 concentrate for 12 wk. RESULTS: Compared to the control Western diet with no supplement, both LCMUFA isomers increased hepatic levels of LCMUFA by 2∼3-fold (p < 0.05), and decreased atherosclerotic lesion areas by more than 40% (p < 0.05), although there were no major differences in plasma lipoproteins or hepatic lipid content. Both LCMUFA isomers significantly decreased plasma CRP levels, improved Abca1-dependent cholesterol efflux capacity of apoB-depleted plasma, and enhanced Ppar transcriptional activities in HepG2 cells. LC-MS/MS proteomic analysis of lipoproteins (HDL, LDL and VLDL) revealed that both LCMUFA isomer diets resulted in similar potentially beneficial alterations in proteins involved in complement activation, blood coagulation, and lipid metabolism. Several lipoprotein proteome changes were significantly correlated with atherosclerotic plaque reduction. CONCLUSIONS: Dietary supplementation with the LCMUFA isomers C20:1 or C22:1 was equally effective in reducing atherosclerosis in LDLr-/-mice and this may partly occur through activation of the Ppar signaling pathways and favorable alterations in the proteome of lipoproteins.


Assuntos
Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Ácidos Graxos Monoinsaturados/farmacologia , Óleos de Peixe/farmacologia , Hiperlipidemias/tratamento farmacológico , Lipoproteínas/sangue , Proteoma , Receptores de LDL/deficiência , Animais , Doenças da Aorta/sangue , Doenças da Aorta/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Cromatografia Líquida , Dieta Ocidental , Modelos Animais de Doenças , Predisposição Genética para Doença , Células Hep G2 , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Knockout , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Placa Aterosclerótica , Proteômica/métodos , Receptores de LDL/genética , Espectrometria de Massas em Tandem
3.
Mol Nutr Food Res ; 61(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28102587

RESUMO

SCOPE: α-Cyclodextrin (α-CD), a cyclic polymer of glucose, has been shown to lower plasma cholesterol in animals and humans; however, its effect on atherosclerosis has not been previously described. METHODS AND RESULTS: apoE-knockout mice were fed either low-fat diet (LFD; 5.2% fat, w/w), or Western high fat diet (21.2% fat) containing either no additions (WD), 1.5% α-CD (WDA); 1.5% ß-CD (WDB); or 1.5% oligofructose-enriched inulin (WDI). Although plasma lipids were similar after 11 weeks on the WD vs. WDA diets, aortic atherosclerotic lesions were 65% less in mice on WDA compared to WD (P < 0.05), and similar to mice fed the LFD. No effect on atherosclerosis was observed for the other WD supplemented diets. By RNA-seq analysis of 16S rRNA, addition of α-CD to the WD resulted in significantly decreased cecal bacterial counts in genera Clostridium and Turicibacterium, and significantly increased Dehalobacteriaceae. At family level, Comamonadaceae significantly increased and Peptostreptococcaceae showed a negative trend. Several of these bacterial count changes correlated negatively with % atherosclerotic lesion and were associated with increased cecum weight and decreased plasma cholesterol levels. CONCLUSION: Addition of α-CD to the diet of apoE-knockout mice decreases atherosclerosis and is associated with changes in the gut flora.


Assuntos
Aterosclerose/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Lipídeos/sangue , alfa-Ciclodextrinas/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Aterosclerose/microbiologia , Aterosclerose/patologia , Peso Corporal/efeitos dos fármacos , Ceco/efeitos dos fármacos , Ceco/microbiologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/genética , Absorção Intestinal , Lipídeos/farmacocinética , Camundongos Knockout para ApoE , alfa-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
4.
Mol Nutr Food Res ; 60(10): 2208-2218, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273599

RESUMO

SCOPE: Fish oil-derived long-chain monounsaturated fatty acids (LCMUFA) containing chain lengths longer than 18 were previously shown to improve cardiovascular disease risk factors in mice. However, it is not known if LCMUFA also exerts anti-atherogenic effects. The main objective of the present study was to investigate the effect of LCMUFA on the development of atherosclerosis in mouse models. METHODS AND RESULTS: LDLR-KO mice were fed Western diet supplemented with 2% (w/w) of either LCMUFA concentrate, olive oil, or not (control) for 12 wk. LCMUFA, but not olive oil, significantly suppressed the development of atherosclerotic lesions and several plasma inflammatory cytokine levels, although there were no major differences in plasma lipids between the three groups. At higher doses 5% (w/w) LCMUFA supplementation was observed to reduce pro-atherogenic plasma lipoproteins and to also reduce atherosclerosis in ApoE-KO mice fed a Western diet. RNA sequencing and subsequent qPCR analyses revealed that LCMUFA upregulated PPAR signaling pathways in liver. In cell culture studies, apoB-depleted plasma from LDLR-K mice fed LCMUFA showed greater cholesterol efflux from macrophage-like THP-1 cells and ABCA1-overexpressing BHK cells. CONCLUSION: Our research showed for the first time that LCMUFA consumption protects against diet-induced atherosclerosis, possibly by upregulating the PPAR signaling pathway.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Graxos Monoinsaturados/farmacologia , Óleos de Peixe/farmacologia , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Colesterol/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Ácidos Graxos/análise , Ácidos Graxos Monoinsaturados/química , Óleos de Peixe/química , Humanos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout , Receptores de LDL/genética
5.
J Pharmacol Exp Ther ; 356(2): 341-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26574515

RESUMO

Apolipoprotein C-II (apoC-II) is a cofactor for lipoprotein lipase, a plasma enzyme that hydrolyzes triglycerides (TGs). ApoC-II deficiency in humans results in hypertriglyceridemia. We used zinc finger nucleases to create Apoc2 mutant mice to investigate the use of C-II-a, a short apoC-II mimetic peptide, as a therapy for apoC-II deficiency. Mutant mice produced a form of apoC-II with an uncleaved signal peptide that preferentially binds high-density lipoproteins (HDLs) due to a 3-amino acid deletion at the signal peptide cleavage site. Homozygous Apoc2 mutant mice had increased plasma TG (757.5 ± 281.2 mg/dl) and low HDL cholesterol (31.4 ± 14.7 mg/dl) compared with wild-type mice (TG, 55.9 ± 13.3 mg/dl; HDL cholesterol, 55.9 ± 14.3 mg/dl). TGs were found in light (density < 1.063 g/ml) lipoproteins in the size range of very-low-density lipoprotein and chylomicron remnants (40-200 nm). Intravenous injection of C-II-a (0.2, 1, and 5 µmol/kg) reduced plasma TG in a dose-dependent manner, with a maximum decrease of 90% occurring 30 minutes after the high dose. Plasma TG did not return to baseline until 48 hours later. Similar results were found with subcutaneous or intramuscular injections. Plasma half-life of C-II-a is 1.33 ± 0.72 hours, indicating that C-II-a only acutely activates lipolysis, and the sustained TG reduction is due to the relatively slow rate of new TG-rich lipoprotein synthesis. In summary, we describe a novel mouse model of apoC-II deficiency and show that an apoC-II mimetic peptide can reverse the hypertriglyceridemia in these mice, and thus could be a potential new therapy for apoC-II deficiency.


Assuntos
Apolipoproteína C-II/genética , Materiais Biomiméticos/metabolismo , Hiperlipoproteinemia Tipo I/genética , Hipertrigliceridemia/genética , Mutação/genética , Fragmentos de Peptídeos/genética , Sequência de Aminoácidos , Animais , Feminino , Hiperlipoproteinemia Tipo I/sangue , Hipertrigliceridemia/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Gravidez , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA