Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 125(Pt B): 111175, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976601

RESUMO

OBJECTIVE: Cepharanthine (CEP) is a drug candidate for tumor, viral infection, and some inflammatory diseases, but its effect on rheumatoid arthritis (RA) and the underlying mechanism are incompletely understood. METHODS: CEP was administered intraperitoneally to a collagen-induced arthritis (CIA) model. Joints went radiological and histological examination and serum cytokines were examined with cytometry-based analysis. M1 macrophages were induced from THP-1 cells or mouse bone marrow-derived macrophages with LPS and IFN-γ. Bulk RNA-seq was performed on macrophage undergoing M1-polarizatioin. Western blotting was applied to determine pathways involved in monocyte chemotaxis and polarization. Glycolysis metabolites were measured by chemiluminescence while glycolytic enzymes were examined by quantitative PCR. RESULTS: We found CEP significantly ameliorated synovial inflammation and joint destruction of CIA mice. It downregulated TNF-α levels in serum and in joints. The number of M1 macrophages were reduced in CEP-treated mice. In vitro, CEP inhibited monocyte chemotaxis to MCP-1 by downregulating CCR2 and reducing ERK1/2 signaling. Additionally, CEP suppressed M1 polarization of macrophages induced by LPS and IFN-γ. Genes involved in IFN-γ signaling, IL-6-JAK/STAT3 signaling, glycolysis, and oxidative phosphorylation process were downregulated by CEP. Several enzymes critically involved in glycolytic metabolism were suppressed by CEP, which resulted in reduced citrate in M1-polarizing macrophages. The inhibitory effect of CEP on macrophage polarization might be attributed to the blockage of TLRs-MyD88/IRAK4-IRF5 signaling pathway together with suppression of overactivated glycolytic metabolism in M1-polarizing macrophages. CONCLUSION: CEP attenuated joint inflammation by suppressing monocyte chemotaxis and proinflammatory differentiation. It has the potential to be developed into a complementary or alternative therapy for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Benzilisoquinolinas , Animais , Camundongos , Lipopolissacarídeos , Artrite Reumatoide/tratamento farmacológico , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Inflamação
2.
J Affect Disord ; 272: 66-76, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379622

RESUMO

BACKGROUND: The brain-gut-microbiota axis plays a role in the pathogenesis of stress-related psychiatric disorders; however, its role in the resilience versus susceptibility after stress remains unclear. Dietary nutrient betaine is suggested to affect the gut microbiome. Here, we examined whether betaine supplementation can affect anhedonia-like phenotype in mice subjected to chronic social defeat stress (CSDS). METHODS: CSDS was performed during betaine supplementation. Sucrose preference test and 16S rRNA analysis of fecal samples were performed. RESULTS: CSDS did not produce an anhedonia-like phenotype in the betaine-treated mice, but did induce an anhedonia-like phenotype in water-treated mice. Furthermore, CSDS treatment did not alter the plasma levels of interleukin-6 (IL-6) of betaine-treated mice whereas CSDS caused higher plasma levels of IL-6 in water-treated mice. Betaine supplementation ameliorated the abnormal diversity and composition of the microbiota in the host gut after CSDS. At the genus level, CSDS caused marked increases in the several bacteria of water-treated mice, but not betaine-treated mice. CSDS increased levels of short-chain fatty acids (i.e., succinic acid and acetic acid) in feces from water-treated mice, but not betaine-treated mice. Interestingly, there are positive correlations between short-chain fatty acids (i.e., succinic acid, acetic acid, butyric acid) and several bacteria among the groups. LIMITATIONS: Specific microbiome were not determined. CONCLUSIONS: These findings suggest that betaine supplementation contributed to resilience to anhedonia in mice subjected to CSDS through anti-inflammation action. Therefore, it is likely that betaine could be a prophylactic nutrient to prevent stress-related psychiatric disorders.


Assuntos
Microbioma Gastrointestinal , Animais , Betaína/farmacologia , Encéfalo , Suplementos Nutricionais , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Derrota Social , Estresse Psicológico
3.
Neuropsychopharmacol Rep ; 39(3): 247-251, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132231

RESUMO

AIMS: Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Although diet may influence the development of PD, the precise mechanisms underlying relationship between diet and PD pathology are unknown. Here, we examined whether dietary intake of glucoraphanin (GF), the precursor of a natural antioxidant sulforaphane in cruciferous vegetables, can affect the reduction of dopamine transporter (DAT) in the mouse striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). METHODS: Normal food pellet or 0.1% GF food pellet was given into male mice for 28 days from 8-week-old. Subsequently, saline (5 mL/kg × 3, 2-hour interval) or MPTP (10 mg/kg × 3, 2-hour interval) was injected into mice. Immunohistochemistry of DAT in the striatum was performed 7 days after MPTP injection. RESULTS: Repeated injections of MPTP significantly decreased the density of DAT-immunoreactivity in the mouse striatum. In contrast, dietary intake of 0.1% GF food pellet significantly protected against MPTP-induced reduction of DAT-immunoreactivity in the striatum. CONCLUSION: This study suggests that dietary intake of GF food pellet could prevent MPTP-induced dopaminergic neurotoxicity in the striatum of adult mice. Therefore, dietary intake of GF-rich cruciferous vegetables may have beneficial effects on prevention for development of PD.


Assuntos
Antioxidantes/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Glucosinolatos/uso terapêutico , Imidoésteres/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Suplementos Nutricionais , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Glucosinolatos/administração & dosagem , Glucosinolatos/farmacologia , Imidoésteres/administração & dosagem , Imidoésteres/farmacologia , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oximas , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA