Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Microbiol ; 133(4): 2375-2389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35778976

RESUMO

AIMS: To characterize the fermentation process and bacterial diversity of sorghum silage inoculated with Lactiplantibacillus plantarum LpAv, Pediococcus pentosaceus PpM and Lacticaseibacillus paracasei LcAv. METHODS AND RESULTS: Chopped sorghum was ensiled using the selected strains. Physicochemical parameters (Ammonia Nitrogen/Total Nitrogen, Dry Matter, Crude Protein, Acid Detergent Fibre, Neutral Detergent Fibre, Acid Detergent Lignin, Ether Extract and Ashes), bacterial counts, cell cytometry and 16sRNA sequencing were performed to characterize the ensiling process and an animal trial (BALB/c mice) was conducted in order to preliminary explore the potential of sorghum silage to promote animal gut health. After 30 days of ensiling, the genus Lactobacillus comprised 68.4 ± 2.3% and 73.5 ± 1.8% of relative abundance, in control and inoculated silages respectively. Richness (Chao1 index) in inoculated samples, but not in control silages, diminished along ensiling, suggesting the domination of fermentation by the inoculated LAB. A trend in conferring enhanced protection against Salmonella infection was observed in the mouse model used to explore the potential to promote gut health of sorghum silage. CONCLUSIONS: The LAB strains used in this study were able to dominate sorghum fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report using metaprofiling of 16sRNA to characterize sorghum silage, showing a microbiological insight where resident and inoculated LAB strains overwhelmed the epiphytic microbiota, inhibiting potential pathogens of the genus Klebsiella.


Assuntos
Lactobacillales , Sorghum , Amônia/metabolismo , Animais , Bactérias/genética , Bactérias/metabolismo , Detergentes , Grão Comestível/metabolismo , Éteres , Fermentação , Lactobacillales/genética , Lactobacillales/metabolismo , Lignina/metabolismo , Camundongos , Nitrogênio/metabolismo , Extratos Vegetais , Silagem/microbiologia , Sorghum/microbiologia
2.
Annu Rev Food Sci Technol ; 13: 385-407, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333590

RESUMO

Life expectancy has dramatically increased over the past 200 years, but modern life factors such as environmental exposure, antibiotic overuse, C-section deliveries, limited breast-feeding, and diets poor in fibers and microbes could be associated with the rise of noncommunicable diseases such as overweight, obesity, diabetes, food allergies, and colorectal cancer as well as other conditions such as mental disorders. Microbial interventions that range from transplanting a whole undefined microbial community from a healthy gut to an ill one, e.g., so-called fecal microbiota transplantation or vaginal seeding, to the administration of selected well-characterized microbes, either live (probiotics) or not (postbiotics), with efficacy demonstrated in clinical trials, may be effective tools to treat or prevent acute and chronic diseases that humans still face, enhancing the quality of life.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Suplementos Nutricionais , Feminino , Humanos , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA