Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosurg ; 128(2): 605-616, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28409730

RESUMO

OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).


Assuntos
Interfaces Cérebro-Computador , Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Artefatos , Interfaces Cérebro-Computador/efeitos adversos , Estimulação Encefálica Profunda/efeitos adversos , Terapia por Estimulação Elétrica , Eletrocorticografia , Eletrodos Implantados , Potenciais Evocados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Motor , Procedimentos Neurocirúrgicos/métodos , Doença de Parkinson/psicologia , Desempenho Psicomotor , Núcleo Subtalâmico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA