Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Phytomedicine ; 114: 154772, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37015187

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common malignancy that can significantly diminish patients' quality of life. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (AC) is an ancient Chinese medicinal combination used for the treatment of CRC. However, the core ingredients and targets involved in regulating lipid and amino acid metabolism in CRC remain unknown. We aimed to explore the key components and pharmacological mechanisms of AC in the treatment of CRC through a comprehensive analysis of network metabolomics, network pharmacology, molecular docking, and biological methods. METHODS: Ultra-performance liquid chromatography/mass spectrometry (MS) was used for quality control. Gas chromatography/MS and liquid chromatography/MS were used to detect metabolites in the feces and serum of CRC mice. A network pharmacology approach and molecular docking were used to explore the potential genes involved in the CRC-target-component network. The effect of AC on tumor immunity was investigated using flow cytometry and polymerase chain reaction. RESULTS: AC, high-dose AC, and 5-fluorouracil treatment reduced liver metastasis and tumor mass. Compared with the CRC group, 2 amino acid metabolites and 14 lipid metabolites (LPC, PC, PE) were upregulated and 15 amino acid metabolites and 9 lipid metabolites (TG, PE, PG, 12-HETE) were downregulated. Subsequently, through network analysis, four components and six hub genes were identified for molecular docking. AC can bind to ALDH1B1, ALDH2, CAT, GOT2, NOS3, and ASS1 through beta-Elemene, canavanine, betaine, and chrysanthemaxanthin. AC promoted the responses of M1 macrophages and down-regulated the responses of M2 macrophages, Treg cells, and the gene expression of related factors. CONCLUSION: Our research showed that AC effectively inhibited the growth and metastasis of tumors and regulated metabolism and immunity in a CRC mouse model. Thus, AC may be an effective alternative treatment option for CRC.


Assuntos
Neoplasias Colorretais , Medicamentos de Ervas Chinesas , Camundongos , Animais , Astragalus propinquus/química , Curcuma/química , Simulação de Acoplamento Molecular , Qualidade de Vida , Metabolômica/métodos , Aminoácidos , Neoplasias Colorretais/patologia , Lipídeos , Medicamentos de Ervas Chinesas/farmacologia
2.
Front Pharmacol ; 13: 815235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264954

RESUMO

Human UDP-glucuronosyltransferase 1A1 (hUGT1A1) is one of the most essential phase II enzymes in humans. Dysfunction or strong inhibition of hUGT1A1 may result in hyperbilirubinaemia and clinically relevant drug/herb-drug interactions (DDIs/HDIs). Recently, a high-throughput fluorescence-based assay was constructed by us to find the compounds/herbal extracts with strong inhibition against intracellular hUGT1A1. Following screening of over one hundred of herbal products, the extract of Ginkgo biloba leaves (GBL) displayed the most potent hUGT1A1 inhibition in HeLa-UGT1A1 cells (Hela cells overexpressed hUGT1A1). Further investigations demonstrated that four biflavones including bilobetin, isoginkgetin, sciadopitysin and ginkgetin, are key constituents responsible for hUGT1A1 inhibition in living cells. These biflavones potently inhibit hUGT1A1 in both human liver microsomes (HLM) and living cells, with the IC50 values ranging from 0.075 to 0.41 µM in living cells. Inhibition kinetic analyses and docking simulations suggested that four tested biflavones potently inhibit hUGT1A1-catalyzed NHPN-O-glucuronidation in HLM via a mixed inhibition manner, showing the K i values ranging from 0.07 to 0.74 µM. Collectively, our findings uncover the key constituents in GBL responsible for hUGT1A1 inhibition and decipher their inhibitory mechanisms against hUGT1A1, which will be very helpful for guiding the rational use of GBL-related herbal products in clinical settings.

3.
BMC Vet Res ; 18(1): 23, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996430

RESUMO

BACKGROUND: Semen cryopreservation has become an essential tool for conservation efforts of the giant panda (Ailuropoda melanoleuca); however, it is severely detrimental to sperm quality. Evidence has shown that antioxidants have the potential to reverse cryopreservation-induced damage in sperm. The purpose of this study was to screen effective antioxidants that could retain sperm quality during cryopreservation and to determine the optimal dose. Seven antioxidant groups, including resveratrol (RSV = 50 µM, RSV = 100 µM, RSV = 150 µM), lycium barbarum polysaccharide (LBP = 2 mg/mL, LBP = 4 mg/mL), laminaria japonica polysaccharides (LJP = 1 mg/mL) or combination (LBP = 2 mg/mL, LJP = 1 mg/mL and RSV = 100 µM) were assessed. RESULTS: RSV, LBP, LJP, or a combination of RSV, LBP, and LJP added to the freezing medium significantly improved sperm progressive motility, plasma membrane integrity, acrosome integrity, and mitochondrial activity during the cryopreservation process. Furthermore, the activities of glutathione peroxidase and superoxide dismutase were also improved. The levels of reactive oxygen species and malondialdehyde in semen were notably reduced. Hyaluronidase activity and acrosin activity were significantly increased in LBP-treated sperm. However, sperm total motility and DNA integrity were not significantly different between the groups. CONCLUSIONS: RSV (50 µM) or LBP (2 mg/mL) are the best candidate antioxidants for inclusion in the freezing medium to improve the quality of giant panda spermatozoa during semen cryopreservation.


Assuntos
Criopreservação , Medicamentos de Ervas Chinesas , Preservação do Sêmen , Espermatozoides , Ursidae , Animais , Antioxidantes , Criopreservação/veterinária , Masculino , Resveratrol/farmacologia , Análise do Sêmen/veterinária , Preservação do Sêmen/veterinária
4.
Artigo em Chinês | WPRIM | ID: wpr-940560

RESUMO

ObjectiveTo study the chemical structure of gardenia blue pigment and its inhibitory activity against monoamine oxidase B (MAO-B), in order to seek a potential feasible way for rational utilization and value enhancement of iridoids in Gardeniae Fructus. MethodIridoid glycosides in Gardeniae Fructus were hydrolyzed by cellulase to obtain their aglycones and reacted with amino acids. Then, the products were purified by column chromatography packed with D101 macroporous resin and preparative liquid chromatography to obtain gardenia blue pigments, and the gardenia blue pigments were identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS). Benzylamine was used as the reaction substrate of MAO-B and in vitro incubated with gardenia blue pigment monomers, high performance liquid chromatography (HPLC) was employed to determine the production of benzaldehyde for evaluating the inhibitory effect of gardenia blue pigments on MAO-B, the mobile phase was methanol (A) -50 mmol·L-1 potassium phosphate buffer (B, pH 3.2) (2∶3), and the detection wavelength was 245 nm. ResultEight compounds of gardenia blue pigment A-H were synthesized and identified. In MAO-B inhibition test, compared with geniposide, the inhibitory activity of gardenia blue pigment D and E was significantly enhanced (P<0.05). Compared with the 6β-hydroxygeniposide, the inhibitory activity of gardenia blue pigment G and H was significantly enhanced (P<0.05, P<0.01). All the four gardenia blue pigments showed better MAO-B inhibitory activity than the prototype compounds. ConclusionGardenia blue pigment is a simple compound formed by one molecule of amino acid and one molecule of iridoid. Some gardenia blue pigments have better MAO-B inhibitory activity than the prototype compounds. The activity of gardenia blue pigment produced by different substrates is different, and the high-value gardenia blue pigment can be prepared based on experimental optimization, which can expand the application range of gardenia blue pigment and enrich the comprehensive utilization of iridoids from Gardeniae Fructus.

5.
Basic Clin Pharmacol Toxicol ; 129(6): 437-449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34478607

RESUMO

Methylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated. Herein, the inhibition potentials of MOA on hUGTs were assessed. The results clearly demonstrated that MOA dose-dependently inhibited all tested hUGTs including UGT1A1 (IC50 = 1.23 µM), one of the most important detoxification enzymes in humans. Further investigations showed that MOA strongly inhibited UGT1A1-catalysed NHPH-O-glucuronidation in a range of biological settings including hUGT1A1, human liver microsomes (HLM) and HeLa cells overexpressing UGT1A1. Inhibition kinetic analyses demonstrated that MOA competitively inhibited UGT1A1-catalysed NHPH-O-glucuronidation in both hUGT1A1 and HLM, with Ki values of 0.52 and 1.22 µM, respectively. Collectively, our findings expanded knowledge of the interactions between MOA and human drug-metabolizing enzymes, which would be very helpful for guiding the use of MOA-related herbal products in clinical settings.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Interações Ervas-Drogas , Isoflavonas/farmacologia , Benzodioxóis/administração & dosagem , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Células HeLa , Humanos , Concentração Inibidora 50 , Isoflavonas/administração & dosagem , Microssomos Hepáticos/enzimologia
6.
Mitochondrial DNA B Resour ; 6(9): 2610-2612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395893

RESUMO

Amaranthus viridis is an important medicinal herb. In this study, the complete chloroplast genome (plastome) of A. viridis was repotred. It was a circular molecular of 150,452 bp in length and consists of a large single-copy region (LSC, 83,832 bp), a small single-copy region (SSC, 17,914 bp), and two inverted repeats (IRs, 24,353 bp for each) regions. The overall GC content was 36.6%. This plastome encodes 113 unique genes, including 79 protein-coding genes, 30 tRNAs, and four rRNAs. The phylogenetic tree of 18 Amaranthaceae chloroplast genomes supported that A. viridis was closely related to A. hybridus.

7.
Int J Biol Macromol ; 180: 252-261, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741369

RESUMO

Strong inhibition of the human UDP-glucuronosyltransferase enzymes (UGTs) may lead to undesirable effects, including hyperbilirubinaemia and drug/herb-drug interactions. Currently, there is no good way to examine the inhibitory effects and specificities of compounds toward all the important human UGTs, side-by-side and under identical conditions. Herein, we report a new, broad-spectrum substrate for human UGTs and its uses in screening and characterizing of UGT inhibitors. Following screening a variety of phenolic compound(s), we have found that methylophiopogonanone A (MOA) can be readily O-glucuronidated by all tested human UGTs, including the typical N-glucuronidating enzymes UGT1A4 and UGT2B10. MOA-O-glucuronidation yielded a single mono-O-glucuronide that was biosynthesized and purified for structural characterization and for constructing an LC-UV based MOA-O-glucuronidation activity assay, which was then used for investigating MOA-O-glucuronidation kinetics in recombinant human UGTs. The derived Km values were crucial for selecting the most suitable assay conditions for assessing inhibitory potentials and specificity of test compound(s). Furthermore, the inhibitory effects and specificities of four known UGT inhibitors were reinvestigated by using MOA as the substrate for all tested UGTs. Collectively, MOA is a broad-spectrum substrate for the human UGTs, which offers a new and practical tool for assessing inhibitory effects and specificities of UGT inhibitors.


Assuntos
Benzodioxóis/metabolismo , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Isoflavonas/metabolismo , Animais , Benzodioxóis/química , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Interações Medicamentosas , Inibidores Enzimáticos/metabolismo , Feminino , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/química , Humanos , Isoflavonas/química , Cinética , Macaca fascicularis , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Coelhos , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
J Sci Food Agric ; 101(7): 2659-2667, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33063326

RESUMO

BACKGROUND: Oxidized phlorotannin can be used as a protein crosslinking agent to produce high-quality fish gel products. Phlorotannin can be easily induced to form quinone compounds in an oxidizing environment, while o-quinone has been proven to be a reactive, electrophilic intermediate that easily reacts with proteins to form rigid molecular crosslinking networks. The objective of this study was to investigate the synergistic effects of ultraviolet A (UVA) irradiation (1 h, 15 W m-2 ) and various concentrations of Laminaria japonica phlorotannin extracts (PTE) on the gel properties of grass carp myofibrillar protein (MP). RESULTS: UVA treatment and PTE could synergistically improve the MP gel properties more than PTE alone (P < 0.05). At 625 mmol kg-1 MP PTE alone, the gel strength and cooking yield reached 3.10 ± 0.16 g cm and 47.45 ± 0.35%, respectively, while with the same level of PTE plus UVA they became 4.26 ± 0.19 g cm and 53.89 ± 1.54%, respectively. The three-dimensional network structure of the gel (with PTE + UVA) showed higher connectivity and tightness than that of the control group (no treatment). CONCLUSIONS: The synergistic effects of PTE and UVA could effectively induce crosslinking of grass carp MP, which could lead to an improvement of MP gel quality. These findings would provide a new technical approach to produce high-quality protein gel products in the fish processing industry. © 2020 Society of Chemical Industry.


Assuntos
Produtos Pesqueiros/análise , Produtos Pesqueiros/efeitos da radiação , Proteínas de Peixes/química , Manipulação de Alimentos/métodos , Laminaria/química , Proteínas Musculares/química , Extratos Vegetais/química , Animais , Benzoquinonas/química , Carpas , Manipulação de Alimentos/instrumentação , Géis/química , Raios Ultravioleta
9.
Food Funct ; 11(11): 9338-9358, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151231

RESUMO

Fucoxanthin is a xanthophyll carotenoid abundant in marine brown algae. The potential therapeutic effects of fucoxanthin on tumor intervention have been well documented, which have aroused great interests in utilizing fucoxanthin in functional foods and nutraceuticals. However, the utilization of fucoxanthin as a nutraceutical in food and nutrient supplements is currently limited due to its low water solubility, poor stability, and limited bioaccessibility. Nano/micro-encapsulation is a technology that can overcome these challenges. A systematic review on the recent progresses in nano/micro-delivery systems to encapsulate fucoxanthin in foods or nutraceuticals is warranted. This article starts with a brief introduction of fucoxanthin and the challenges of oral delivery of fucoxanthin. Nano/micro-encapsulation technology is then covered, including materials and strategies for constructing the delivery system. Finally, future prospective has been discussed on properly designed oral delivery systems of fucoxanthin for managing cancer. Natural edible materials such as whey protein, casein, zein, gelatin, and starch have been successfully utilized to fabricate lipid-based, gel-based, or emulsion-based delivery systems, molecular nanocomplexes, and biopolymer nanoparticles with the aid of advanced processing techniques, such as freeze-drying, high pressure homogenization, sonication, anti-solvent precipitation, coacervation, ion crosslinking, ionic gelation, emulsification, and enzymatic conjugation. These formulated nano/micro-capsules have proven to be effective in stabilizing and enhancing the bioaccessibility of fucoxanthin. This review will inspire a surge of multidisciplinary research in a broader community of foods and motivate material scientists and researchers to focus on nano/micro-encapsulated fucoxanthin in order to facilitate the commercialization of orally-deliverable tumor intervention products.


Assuntos
Antineoplásicos/uso terapêutico , Suplementos Nutricionais , Xantofilas/uso terapêutico , Administração Oral , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Disponibilidade Biológica , Composição de Medicamentos , Humanos , Nanopartículas , Xantofilas/administração & dosagem , Xantofilas/química
10.
J Food Sci ; 85(7): 2050-2059, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32572982

RESUMO

The effect of phlorotannin extracts (PTE) (from sporophyll of Undaria pinnatifida) added at different levels (0, 25, 125, 625 µmol/g protein) on the gel properties of mackerel (Scomberomorus niphonius) myofibrillar protein (MP) was studied with and without ultraviolet A (UVA) irradiation. The results showed that the gel strength and cooking yield increased in a PTE dose-dependent manner, and at the level of 625 µmol/g protein PTE, the highest gel strength of 308.43 ± 8.12 (mN·cm) and cooking yield of 76.16 ± 1.40% were obtained in the samples treated with UVA irradiation. The same samples also showed increased carbonyl content, decreased total sulfhydryl, unwinding of α-helix, and quenching of fluorescence intensity of endogenous tryptophan, all of which indicated that elevated protein oxidation in these samples led to enhanced protein cross-linking. Results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated aggregation of myosin heavy chains (MHCs) in the UVA-treated gels with PTE, also evidenced by the dense three-dimensional network structure in these samples visualized by scanning electron microscopy (SEM). Electron spin resonance (ESR) and spin trapping results indicated that free radicals were produced during the gelation process, possibly originated from UVA-treated PTE, which played a critical role of oxidizing fish MPs, and eventually led to the improvement of the textural properties of the mackerel MP gel. PRACTICAL APPLICATION: Brown algae are a family of high-yield marine algae. Phlorotannin extracts are highly active natural substances extracted from brown algae that can have many applications. Ultraviolet A (UVA) as a green and environmentally friendly physical processing method has been widely used in food processing in recent years. The method proposed in this study could be utilized to improve properties of fish protein gel made from poorly performing low-priced fishes, and provide workable guidance for industry to expand the application of brown algae in food processing to better meet consumer's demand for high-quality marine foods.


Assuntos
Produtos Pesqueiros/análise , Proteínas de Peixes/química , Aditivos Alimentares/análise , Manipulação de Alimentos/métodos , Phaeophyceae/química , Extratos Vegetais/análise , Undaria/química , Animais , Cor , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Peixes/efeitos da radiação , Qualidade dos Alimentos , Géis/química , Géis/efeitos da radiação , Oxirredução , Perciformes , Raios Ultravioleta
11.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357572

RESUMO

Bioassay-guided fractionation of the ethanol extract of whole herbs of Achillea alpina led to the isolation of isochlorogenic acids A and B as transient receptor potential vanilloid 3 (TRPV3) channel antagonists by using a calcium fluorescent assay. The structures were identified by spectroscopic analysis and the inhibitory activities of isochlorogenic acids A and B were confirmed by whole-cell patch clamp recordings of human embryonic kidney 293 (HEK293) cells expressing human TRPV3. Molecular docking results revealed that these two compounds reside in the same active pocket of human TRPV3 channel protein with lower binding energy than the agonist 2-aminoethoxydiphenyl borate (2-APB). High-speed counter-current chromatography (HSCCC) coupled with a liquid-liquid extraction approach was successfully established for the separation of isochlorogenic acids A and B from the whole herbs of A. alpina. Ethyl acetate and n-hexane-ethyl acetate-water (3:3:4 and 1:5:4, v/v/v) were selected as liquid-liquid extraction solvent systems to remove high- and low-polarity impurities in the mixture. Sixty g of ethanol extract was refined by solvent partition to yield 1.7 g of the enriched fraction, of which 480 mg in turn obtained 52.5 mg of isochlorogenic acid B (purity 98.3%) and 37.6 mg isochlorogenic acid A (purity 96.2%) after HSCCC with n-hexane-ethyl acetate-water containing 1% acetic acid (1:4:8, v/v/v).


Assuntos
Achillea/metabolismo , Ácido Clorogênico/análogos & derivados , Distribuição Contracorrente/métodos , Extração Líquido-Líquido/métodos , Extratos Vegetais/química , Canais de Cátion TRPV/antagonistas & inibidores , Acetatos/química , Compostos de Boro/química , Compostos de Boro/farmacologia , Domínio Catalítico , Ácido Clorogênico/química , Ácido Clorogênico/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Células HEK293 , Hexanos/química , Humanos , Simulação de Acoplamento Molecular , Solventes/química , Análise Espectral , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/química , Água/química
12.
Chin J Nat Med ; 17(11): 858-870, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31831132

RESUMO

Psoraleae Fructus (the dried fruits of Psoralea corylifolia), one of the most frequently used Chinese herbs in Asian countries, has a variety of biological activities. In clinical settings, Psoraleae Fructus or Psoraleae Fructus-related herbal medicines frequently have been used in combination with a number of therapeutic drugs for the treatment of various human diseases, such as leukoderma, rheumatism and dysentery. The use of Psoraleae Fructus in combination with drugs has aroused concern of the potential risks of herb-drug interactions (HDI) or herb-endobiotic interactions (HEI). This article reviews the interactions between human drug-metabolizing enzymes and the constituents of Psoraleae Fructus; the major constituents in Psoraleae Fructus, along with their chemical structures and metabolic pathways are summarized, and the inhibitory and inductive effects of the constituents in Psoraleae Fructus on human drug-metabolizing enzymes (DMEs), including target enzyme(s), its modulatory potency, and mechanisms of action are presented. Collectively, this review summarizes current knowledge of the interactions between the Chinese herb Psoraleae Fructus and therapeutic drugs in an effort to facilitate its rational use in clinical settings, and especially to avoid the potential risks of HDI or HEI through human DMEs.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Glucuronosiltransferase/metabolismo , Interações Ervas-Drogas , Psoralea/química , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
13.
Mar Drugs ; 17(8)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344874

RESUMO

Undaria pinnatifida sporophyll (U. pinnatifida) is a major byproduct of U. pinnatifida (a brown algae) processing. Its phenolic constituents, phlorotannins, are of special interest due to their intrinsic ability to precipitate proteins. Herein, a high-temperature extraction procedure was used to isolate these biologically active compounds. The heating temperature, heating time, and extraction solvent (ethanol) concentration were examined with response surface analysis to determine the optimal conditions to achieve the maximum extraction rate. The analysis revealed the optimal conditions to be: 170 °C of heating temperature, 5.2 h of heating time, and 52% ethanol concentration for a yield of 10.7 ± 0.2 mg gallic acid equivalent/g dry weight (GAE/g DW) of sample. Compared to epigallocatechin gallate (EGCG), the extracted phlorotannins displayed higher antioxidant activity on H2O2-induced RAW 264.7 cells with improved efficiency. Furthermore, the compounds exhibited strong anti-inflammatory activity. These findings potentially can be utilized to guide development of novel functional foods and food supplements from sea-originated resources such as brown algae.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/fisiologia , Undaria/química , Animais , Linhagem Celular , Alimento Funcional , Camundongos , Phaeophyceae/química , Fenóis/química , Células RAW 264.7
14.
Int J Biol Macromol ; 126: 653-661, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594625

RESUMO

Flavonoids are widely distributed phytochemicals in vegetables, fruits and medicinal plants. Recent studies demonstrate that some natural flavonoids are potent inhibitors of the human UDP-glucuronosyltransferase 1A1 (UGT1A1), a key enzyme in detoxification of endogenous harmful compounds such as bilirubin. In this study, the inhibitory effects of 56 natural and synthetic flavonoids on UGT1A1 were assayed, while the structure-inhibition relationships of flavonoids as UGT1A1 inhibitors were investigated. The results demonstrated that the C-3 and C-7 hydroxyl groups on the flavone skeleton would enhance UGT1A1 inhibition, while flavonoid glycosides displayed weaker inhibitory effects than their corresponding aglycones. Further investigation on inhibition kinetics of two strong flavonoid-type UGT1A1 inhibitors, acacetin and kaempferol, yielded interesting results. Both flavonoids were competitive inhibitors against UGT1A1-mediated NHPN-O-glucuronidation, but were mixed and competitive inhibitors toward UGT1A1-mediated NCHN-O-glucuronidation, respectively. Furthermore, docking simulations showed that the binding areas of NHPN, kaempferol and acacetin on UGT1A1 were highly overlapping, and convergence with the binding area of bilirubin within UGT1A1. In summary, detailed structure-inhibition relationships of flavonoids as UGT1A1 inhibitors were investigated carefully and the findings shed new light on the interactions between flavonoids and UGT1A1, and will contribute considerably to the development of flavonoid-type drugs without strong UGT1A1 inhibition.


Assuntos
Flavonoides/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Domínio Catalítico , Flavonas/química , Flavonas/farmacologia , Flavonoides/química , Corantes Fluorescentes/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Humanos , Concentração Inibidora 50 , Quempferóis/química , Quempferóis/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Especificidade por Substrato/efeitos dos fármacos
15.
Mol Pharmacol ; 94(4): 1164-1173, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108138

RESUMO

Coumarin osthole is a dominant bioactive ingredient of the natural Cnidium monnieri plant commonly used for traditional Chinese herbal medicines for therapies and treatments including antipruritus and antidermatitis. However, the molecular mechanism underlying the action of osthole remains unclear. In this study, we report that osthole exerts an antipruritic effect through selective inhibition of Ca2+-permeable and thermosensitive transient receptor potential vanilloid 3 (TRPV3) cation channels that are primarily expressed in the keratinocytes of the skin. Coumarin osthole was identified as an inhibitor of TRPV3 channels transiently expressed in HEK293 cells in a calcium fluorescent assay. Inhibition of the TRPV3 current by osthole and its selectivity were further confirmed by whole-cell patch clamp recordings of TRPV3-expressing HEK293 cells and mouse primary cultured keratinocytes. Behavioral evaluation demonstrated that inhibition of TRPV3 by osthole or silencing by knockout of the TRPV3 gene significantly reduced the scratching induced by either acetone-ether-water or histamine in localized rostral neck skin in mice. Taken together, our findings provide a molecular basis for use of natural coumarin osthole from the C. monnieri plant in antipruritic or skin care therapy, thus establishing a significant role of the TRPV3 channel in chronic itch signaling or acute histamine-dependent itch sensation.


Assuntos
Antipruriginosos/farmacologia , Cumarínicos/farmacologia , Prurido/tratamento farmacológico , Pele/efeitos dos fármacos , Pele/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prurido/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Int J Food Microbiol ; 284: 40-47, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29990638

RESUMO

Concerns have been on the rise regarding the use of chlorine-based sanitizers for fresh produce sanitation due to the production of toxic disinfection by-products (DBPs). This study was undertaken to evaluate the efficacy of activated persulfate in inactivating Escherichia coli O157:H7 and Listeria monocytogenes in pure culture. The objectives were to study the effect of persulfate to activator ratios and determine the major contributing radical in pathogen inactivation. A five-strain cocktail of each pathogen was treated with sodium persulfate activated by ferrous sulfate or sodium hydroxide for 60 s or 120 s. Non-selective agars supplemented with sodium pyruvate were used for pathogen enumeration. The steady-state concentrations of free radicals were quantified using HPLC-DAD. Radical scavengers (tert-butanol, isopropanol, and benzoquinone) were used to determine the major contributing radical in pathogen inactivation. The results showed more than 7 log CFU/mL reductions can be achieved in 120 s for both pathogens at appropriate activation conditions. For ferrous activation, the persulfate to ferrous ratio played an important role in the overall inactivation efficacy. The maximum pathogen reduction (7.77 log CFU/mL for E. coli O157:H7 and 7.25 log CFU/mL for L. monocytogenes) was achieved at persulfate to ferrous molar ratio of 1:0.33 when the initial persulfate concentration was set at 40 mmol/L. Further increase or decrease of ferrous ratio always leads to lower pathogen reductions. For alkaline activation, the inactivation efficacy increased with more initial sodium hydroxide. The maximum reduction was achieved at 40 mmol/L persulfate with 30 mmol/L sodium hydroxide for E. coli O157:H7 (6.21 log CFU/mL reduction) and at 500 mmol/L persulfate with 350 mmol/L sodium hydroxide for L. monocytogenes (8.64 log CFU/mL reduction). Also, persulfate activated by sodium hydroxide always achieved significantly (P < 0.05) higher microbial reductions than sodium hydroxide or persulfate alone. L. monocytogenes was generally more resistant against the activated persulfate treatment compared with E. coli O157:H7, which might be due to the different cell envelop structures between Gram-positive and Gram-negative bacteria. Hydroxyl radical was demonstrated to be the major radical to inactivate both pathogens in ferrous activation while superoxide radical was demonstrated to be the major radical to inactivate both pathogens in alkaline activation.


Assuntos
Desinfecção/métodos , Escherichia coli O157/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Compostos de Sódio/farmacologia , Sulfatos/farmacologia , Contagem de Colônia Microbiana , Escherichia coli O157/metabolismo , Compostos Ferrosos/química , Microbiologia de Alimentos , Radicais Livres/análise , Listeria monocytogenes/metabolismo , Hidróxido de Sódio/química
17.
Phytother Res ; 28(10): 1486-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700514

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic constituent in green tea, is known as a powerful antioxidant but concomitantly possesses a prooxidant property. We investigated the effect of EGCG on phloxine B (PhB)-induced photocytotoxicity in human T lymphocytic leukemia Jurkat cells. EGCG significantly potentiated PhB-induced photocytotoxic effects, including the inhibition of cell proliferation, DNA fragmentation, and caspase-3 activity induction in Jurkat cells. Catalase attenuated the enhanced cytotoxicity by EGCG, suggesting the involvement of extracellularly produced hydrogen peroxide. Indeed, EGCG significantly enhanced extracellular hydrogen peroxide formation induced by photo-irradiated PhB. The EGCG also enhanced intracellular reactive oxygen species accumulation, c-Jun N-terminal kinase (JNK) phosphorylation, and interferon-γ (IFN-γ) gene expression, all of which are involved in PhB-induced apoptosis. Taken together, our data suggest that EGCG is capable of potentiating photodynamic therapy responses, presumably through the intracellular oxidative stress-sensitive JNK/IFN-γ pathway by exogenous hydrogen peroxide formation.


Assuntos
Catequina/análogos & derivados , Células Jurkat/efeitos dos fármacos , Fotoquimioterapia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Catequina/farmacologia , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Humanos , Peróxido de Hidrogênio/metabolismo , Interferon gama/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proibitinas , Espécies Reativas de Oxigênio/metabolismo
18.
World J Gastroenterol ; 19(33): 5485-92, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24023491

RESUMO

AIM: To investigate the effect of propofol on human pancreatic cells and the molecular mechanism of propofol action. METHODS: We used the human pancreatic cancer cell line MIAPaCa-2 for in vitro studies measuring growth inhibition and degree of apoptotic cell death induced by propofol alone, gemcitabine alone, or propofol followed by gemcitabine. All experiments were conducted in triplicate and carried out on three or more separate occasions. Data were means of the three or more independent experiments ± SE. Statistically significant differences were determined by two-tailed unpaired Student's t test and defined as P < 0.05. RESULTS: Pretreatment of cells with propofol for 24 h followed by gemcitabine resulted in 24%-75% growth inhibition compared with 6%-18% when gemcitabine was used alone. Overall growth inhibition was directly correlated with apoptotic cell death. We also showed that propofol potentiated gemcitabine-induced killing by downregulation of nuclear factor-κB (NF-κB). In contrast, NF-κB was upregulated when pancreatic cancer cells were exposed to gemcitabine alone, suggesting a potential mechanism of acquired chemoresistance. CONCLUSION: Inactivation of the NF-κB signaling pathway by propofol might abrogate gemcitabine-induced activation of NF-κB, resulting in chemosensitization of pancreatic tumors to gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Desoxicitidina/análogos & derivados , Hipnóticos e Sedativos/administração & dosagem , NF-kappa B/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Propofol/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA