Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Pharmacol ; 14: 1129817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007037

RESUMO

Background: Respiratory diseases are common and frequent diseases. Due to the high pathogenicity and side effects of respiratory diseases, the discovery of new strategies for drug treatment is a hot area of research. Scutellaria baicalensis Georgi (SBG) has been used as a medicinal herb in China for over 2000 years. Baicalin (BA) is a flavonoid active ingredient extracted from SBG that BA has been found to exert various pharmacological effects against respiratory diseases. However, there is no comprehensive review of the mechanism of the effects of BA in treating respiratory diseases. This review aims to summarize the current pharmacokinetics of BA, baicalin-loaded nano-delivery system, and its molecular mechanisms and therapeutical effects for treating respiratory diseases. Method: This review reviewed databases such as PubMed, NCBI, and Web of Science from their inception to 13 December 2022, in which literature was related to "baicalin", "Scutellaria baicalensis Georgi", "COVID-19", "acute lung injury", "pulmonary arterial hypertension", "asthma", "chronic obstructive pulmonary disease", "pulmonary fibrosis", "lung cancer", "pharmacokinetics", "liposomes", "nano-emulsions", "micelles", "phospholipid complexes", "solid dispersions", "inclusion complexes", and other terms. Result: The pharmacokinetics of BA involves mainly gastrointestinal hydrolysis, the enteroglycoside cycle, multiple metabolic pathways, and excretion in bile and urine. Due to the poor bioavailability and solubility of BA, liposomes, nano-emulsions, micelles, phospholipid complexes, solid dispersions, and inclusion complexes of BA have been developed to improve its bioavailability, lung targeting, and solubility. BA exerts potent effects mainly by mediating upstream oxidative stress, inflammation, apoptosis, and immune response pathways. It regulates are the NF-κB, PI3K/AKT, TGF-ß/Smad, Nrf2/HO-1, and ERK/GSK3ß pathways. Conclusion: This review presents comprehensive information on BA about pharmacokinetics, baicalin-loaded nano-delivery system, and its therapeutic effects and potential pharmacological mechanisms in respiratory diseases. The available studies suggest that BA has excellent possible treatment of respiratory diseases and is worthy of further investigation and development.

2.
Phytomedicine ; 114: 154768, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36948143

RESUMO

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE: To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS: PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS: We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, ß-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION: We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.


Assuntos
Produtos Biológicos , Humanos , Animais , NAD/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
3.
Phytomedicine ; 112: 154707, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805483

RESUMO

BACKGROUND: Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE: This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS: Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS: The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-ß expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION: It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.


Assuntos
COVID-19 , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Bleomicina/toxicidade , COVID-19/patologia , Pulmão/patologia , Estresse Oxidativo
4.
J Ethnopharmacol ; 306: 116143, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36632855

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Natural herbs are gradually gaining recognition for their efficacy and safety in preventing diabetes and improving quality of life. Morus alba L. is a plant widely grown in Asia and is a traditional Chinese herb with a long history of use. Furthermore, several parts of Morus alba L. have been found to have significant health benefits. In particular, mulberry (Morus alba L.) leaves (ML) have been shown in human and animal studies to be promising hypoglycemic agents that can reduce or prevent glucolipid metabolism disorders caused by imbalances in the gut microbiota, inflammation, and oxidative stress and have demonstrated significant improvements in glucose metabolism-related markers, effectively lowering blood glucose, and reducing hyperglycemia-induced target organ damage. AIM OF THE STUDY: This review briefly summarizes the methods for obtaining ML's bioactive components, elaborates on the clinical potential of the relevant components in managing type 2 diabetes mellitus (T2DM), and focuses on the therapeutic mechanisms of gut microbiota, inflammation, oxidative stress, and metabolism, to provide more inspiration and directions for future research in the field of traditional natural plants for the management of T2DM and its complications. MATERIALS AND METHODS: Research on ML and its bioactive components was mainly performed using electronic databases, including PubMed, Google Scholar, and ScienceNet, to ensure the review's quality. In addition, master's and doctoral theses and ancient documents were consulted. RESULTS: In clinical studies, we found that ML could effectively reduce blood glucose, glycated hemoglobin, and homeostasis model assessment of insulin resistance in T2DM patients. Furthermore, many in vitro and in vivo experiments have found that ML is involved in various pathways that regulate glucolipid metabolism and resist diabetes while alleviating liver and kidney damage. CONCLUSIONS: As a potential natural anti-diabetic phytomedicine, an in-depth study of ML can provide new ideas and valuable references for applying traditional Chinese medicine to treat T2DM. While continuously exploring its clinical efficacy and therapeutic mechanism, the extraction method should be optimized to improve the efficacy of the bioactive components. in addition, further research on the dose-response relationship of drugs to determine the effective dose range is required.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Morus , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Qualidade de Vida , Extratos Vegetais/farmacologia , Inflamação/tratamento farmacológico , Folhas de Planta/metabolismo
5.
J Ethnopharmacol ; 300: 115715, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108895

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY: This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS: This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS: P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS: P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.


Assuntos
Ginsenosídeos , Traumatismo por Reperfusão Miocárdica , Panax , Fitosteróis , Cálcio , Citocinas , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Oxigênio , Polissacarídeos
6.
Biomed Pharmacother ; 158: 114096, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502752

RESUMO

BACKGROUND: Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS: The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS: Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-ß/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION: This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.


Assuntos
Asma , Ginsenosídeos , Hipertensão Pulmonar , Influenza Humana , Neoplasias Pulmonares , Panax , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ginsenosídeos/química , Fibrose Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Influenza Humana/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Panax/química
7.
Front Cell Infect Microbiol ; 12: 853981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548468

RESUMO

Panax ginseng, as the king of Chinese herb, has significant therapeutic effects on obesity, type 2 diabetes mellitus, fatty liver disease, colitis, diarrhea, and many other diseases. This review systematically summarized recent findings, which show that ginseng plays its role by regulating gut microbiota diversity, and gut microbiota could also regulate the transformation of ginsenosides. We conclude the characteristics of ginseng in regulating gut microbiota, as the potential targets to prevent and treat metabolic diseases, colitis, neurological diseases, cancer, and other diseases. Ginseng treatment can increase some probiotics such as Bifidobacterium, Bacteroides, Verrucomicrobia, Akkermansia, and reduce pathogenic bacteria such as Deferribacters, Lactobacillus, Helicobacter against various diseases. Meanwhile, Bacteroides, Eubacterium, and Bifidobacterium were found to be the key bacteria for ginsenoside transformation in vivo. Overall, ginseng can regulate gut microbiome diversity, further affect the synthesis of secondary metabolites, as well as promote the transformation of ginsenosides for improving the absorptivity of ginsenosides. This review can provide better insight into the interaction of ginseng with gut microbiota in multiple disorders and ginsenoside transformation.


Assuntos
Colite , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ginsenosídeos , Panax , Bactérias , Bifidobacterium , Humanos
8.
Biomed Res Int ; 2022: 8752325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178456

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive disease with high mortality and poor prognosis. The prognostic signatures related to conventional therapy response remain limited. The Wenfei Buqi Tongluo (WBT) formula, a traditional Chinese medicine (TCM) formula, has been widely utilized to treat respiratory diseases in China, which is particularly effective in promoting inflammatory absorption. In this study, we aim to explore the mechanism of the WBT formula in the inhibition of inflammatory response during IPF, based on network pharmacology and in vivo experiments. METHODS: Network pharmacology was applied to predict the changes of biological processes and potential pathways for the WBT formula against IPF. Histopathological changes, inflammatory factors (IL-6, IL-1ß, and TNF-α), and the proteins of the TLR4/MyD88/NF-κB pathway in bleomycin- (BLM-) induced mice model were examined by hematoxylin-eosin (H&E), Masson or immunohistochemistry staining, Western blot, and enzyme-linked immunosorbent assay analysis. RESULTS: A total of 163 possible components and 167 potential targets between the WBT formula and IPF were obtained. The enrichments of network pharmacology showed that inflammation response, TNF, and NF-κB pathways were involved in the treatment of WBT against IPF. The in vivo experiments indicated that the WBT formula could ameliorate inflammatory exudation and collagen deposition at a histopathology level in the BLM-induced mice model. The levels of IL-6, IL-1ß, and TNF-α were reduced after the WBT formula treatment. Moreover, the expressions of phosphorylated-NF-κB p65, TLR4, and MyD88 were significantly downregulated by the WBT formula, compared with the BLM-induced group. CONCLUSION: These results indicated that the WBT formula can suppress BLM-induced IPF in a mouse model by inhibiting the inflammation via the TLR4/MyD88/NF-κB pathway. This study provides a new insight into the molecular mechanisms of the WBT formula in the application at the clinic.


Assuntos
Fibrose Pulmonar Idiopática , NF-kappa B , Animais , Medicamentos de Ervas Chinesas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443587

RESUMO

Panax spp. (Araliaceae family) are widely used medicinal plants and they mainly include Panax ginseng C.A. Meyer, Panax quinquefolium L. (American ginseng), and Panax notoginseng (notoginseng). Polysaccharides are the main active ingredients in these plants and have demonstrated diverse pharmacological functions, but comparisons of isolation methods, structural features, and bioactivities of these polysaccharides have not yet been reported. This review summarizes recent advances associated with 112 polysaccharides from ginseng, 25 polysaccharides from American ginseng, and 36 polysaccharides from notoginseng and it compares the differences in extraction, purification, structural features, and bioactivities. Most studies focus on ginseng polysaccharides and comparisons are typically made with the polysaccharides from American ginseng and notoginseng. For the extraction, purification, and structural analysis, the processes are similar for the polysaccharides from the three Panax species. Previous studies determined that 55 polysaccharides from ginseng, 18 polysaccharides from American ginseng, and 9 polysaccharides from notoginseng exhibited anti-tumor activity, immunoregulatory effects, anti-oxidant activity, and other pharmacological functions, which are mediated by multiple signaling pathways, including mitogen-activated protein kinase, nuclear factor kappa B, or redox balance pathways. This review can provide new insights into the similarities and differences among the polysaccharides from the three Panax species, which can facilitate and guide further studies to explore the medicinal properties of the Araliaceae family used in traditional Chinese medicine.


Assuntos
Fracionamento Químico/métodos , Panax/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Animais , Humanos , Polissacarídeos/isolamento & purificação
10.
Front Pharmacol ; 12: 688490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149431

RESUMO

Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.

11.
Biomed Pharmacother ; 132: 110832, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059260

RESUMO

Panax Ginseng has been widely used in Asian for thousand years. In order to evaluate the efficacy and safety of ginseng, more and more ginseng clinical trials (GCTs) have been conducted recently. However, there is a lack of an extensive review summarizing the current status for the quality and quantity of ginseng clinical researches until now. Therefore, clinical trials for ginseng were retrieved from International Clinical Trials Registration Platform and collected through the system retrieval method of Preferred Reporting Items for Systematic Reviews and Meta-Analyses in PubMed, the Web of Science, the Korean Studies Information Service System, and SCOPUS database. We summarized the clinical characteristics of 152 registered ginseng clinical trials (R-GCTs) and119 published ginseng clinical trials (P-GCTs), such as source register, recruitment status, primary purpose, duration, sample size, conditions, and outcomes. Among them, ginseng has mainly been studied in clinical trials in the single-center and less than 200 subjects. In the most GCTs, healthy subjects and patients with various conditions, such as cardiovascular and metabolic diseases are administrated with ginseng, ginsenosides or the prescriptions containing ginseng for less than 3 months to investigate the protective and therapeutic functions of ginseng. 95 (79.8 %) published articles showed that ginseng has plenty of positive effects. This review could assist the basic researchers and clinical doctors to understand current status and problem of ginseng clinical research, and perhaps could benefit for the reasonable and accurate design of future clinical studies.


Assuntos
Ginsenosídeos/farmacologia , Panax/química , Preparações de Plantas/farmacologia , Animais , Ensaios Clínicos como Assunto , Ginsenosídeos/isolamento & purificação , Humanos , Preparações de Plantas/química
12.
Medicine (Baltimore) ; 98(32): e16764, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31393394

RESUMO

Numerous studies have shown that the blood of cancer patients are generally in hypercoagulable statement. The aim of the present research is to study the relationships of plasma fibrinogen (Fbg) levels with clinicopathological stages (CS) and tumor markers of non-small cell lung cancer (NSCLC).Baseline information, plasma Fbg levels, CS, and expression level of tumor markers were collected from medical records retrospectively. Unitary linear regression was used to analyze the relationships between continuous variables and Fbg, and multiple linear regression was used to analyze the relationships between categorical variables and Fbg. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology (Version 4) for NSCLC were adopted to evaluate CS.A total of 652 NSCLC patients were included. Compared with the females, male patients had higher mean plasma Fbg levels (P < .001). The later the N stages (P = .002), M stages (P = .002), and CS (P = .001) were, the higher the average plasma Fbg levels were. The levels of squamous cell carcinoma antigen (P = .001), carbohydrate antigen 125 (P = .041), and neuron-specific enolase (P < .001) were positively correlated with plasma Fbg concentration. The plasma level of Fbg in lung adenocarcinoma patients (P < .001) was the lowest, while that of lung squamous cell carcinoma patients (P < .001) was the highest in NSCLC patients.The plasma Fbg concentration is related to gender, CS, and tumor markers in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Fibrinogênio/análise , Neoplasias Pulmonares/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/sangue , Biomarcadores Tumorais , Antígeno Ca-125/análise , Carcinoma Pulmonar de Células não Pequenas/sangue , Feminino , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fosfopiruvato Hidratase/sangue , Estudos Retrospectivos , Serpinas/sangue , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA