Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Med ; 22(3): 286-294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565435

RESUMO

OBJECTIVE: Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol's efficacy while reducing or preventing its toxicity. METHODS: In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol's cytotoxicity and whether the cell death was linked to ferroptosis. RESULTS: Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol's toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells. CONCLUSION: One potential mechanism of celastrol's cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol's toxicity while preserving its therapeutic effects. Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. J Integr Med. 2024; 22(3): 286-294.


Assuntos
Ferroptose , Resistência à Insulina , Triterpenos Pentacíclicos , Humanos , Células Hep G2 , Triterpenos Pentacíclicos/farmacologia , Ferroptose/efeitos dos fármacos , Triterpenos/farmacologia , Cicloexilaminas/farmacologia , Acetilcisteína/farmacologia , Fenilenodiaminas/farmacologia , Simulação de Acoplamento Molecular , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
2.
Neurosci Lett ; 752: 135842, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766734

RESUMO

BACKGROUND: Numerous publications have demonstrated that melatonin administration is associated with mortality reduction and improvement in neurological outcomes after traumatic brain injury (TBI). However, there are significant sex differences in several diseases associated with melatonin. We aimed to determine whether androgen was responsible for enhanced susceptibility of melatonin against TBI in females, as well as potential molecular mechanisms. METHODS: Weight-drop was used to establish a rodent model of TBI. Melatonin (10 mg/kg) and testosterone (1 mg/kg) were administered three times every day for three days after TBI using subcutaneous injection, respectively. Seven days after TBI, an open field assay was used to evaluate locomotor and exploratory activities. Neuronal amount, neuronal apoptosis, and expression of phosphorylated extracellularly regulated protein kinases 1/2 (ERK1/2), c-jun N-terminal kinase 1/2 (JNK1/2), and p38 mitogen-activated protein kinase (p38MAPK) in neurons were assessed using immunofluorescence assay seven days after TBI. The expression of caspase-3, Bax, and Bcl-2 in the frontal cortex was detected using western blot. RESULTS: Compared with female rats, melatonin administration exhibited more neuroprotective effects (including improved locomotor and exploratory activities, elevated neuronal amount, and reduced neuronal apoptosis) in male rats exposed to TBI. Moreover, testosterone significantly improved locomotor and exploratory activities, elevated neuronal amount, decreased neuronal apoptosis, downregulated phosphorylation of JNK1/2- and p38MAPK-positive neurons, but upregulated phosphorylation of ERK1/2-positive neurons in the frontal cortex, and reduced the expressions of cleaved caspase-3, Bax, but increased Bcl-2 expressions in female rats exposed to TBI. CONCLUSIONS: Androgen was responsible for the enhanced susceptibility to TBI under melatonin supplementation in females through a mechanism that may be associated with MAPK pathway regulation.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Testosterona/farmacologia , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melatonina/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Fosforilação/efeitos dos fármacos , Ratos , Fatores Sexuais , Testosterona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA