Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602484

RESUMO

Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 µg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.

2.
J Hazard Mater ; 463: 132910, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37926014

RESUMO

Tobacco grown in areas with high-geochemical backgrounds exhibits considerably different cadmium (Cd) bioaccumulation abilities due to regional disparities and environmental changes. However, the impact of key factors on the Cd bioaccumulation ability of tobacco grown in the karst regions with high selenium (Se) geochemical backgrounds is unclear. Herein, 365 paired rhizospheric soil-grown tobacco samples and 321 topsoil samples were collected from typical karst tobacco-growing soil in southwestern China and analyzed for Cd and Se. XGBoost was used to predict and evaluate the Cd bioaccumulation ability of tobacco and potential influencing factors. Results showed that regional geochemical characteristics, such as soil Cd and Se contents, soil type, and lithology, have the highest influence on the Cd bioaccumulation ability of tobacco, accounting for 46.5% of the overall variation. Moreover, soil Se contents in high-geochemical background areas considerably affect Cd bioaccumulation in tobacco, with a threshold for the mutual suppression effects of Cd and Se at a soil Se content of 0.8 mg/kg. According to the results of bivariate local indicators of spatial association analysis, tobacco cultivated in the central, northeast, and southeast regions of Zunyi City carries a lower risk of soil Cd contamination. This study provides new insights for managing tobacco cultivation in karst regions.


Assuntos
Selênio , Poluentes do Solo , Cádmio/análise , Bioacumulação , Poluentes do Solo/análise , Selênio/análise , China , Solo/química , Produtos do Tabaco
3.
J Ethnopharmacol ; 319(Pt 3): 117358, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Inulae Herba (IH) is known as Jinfeicao recorded in Chinese Pharmacopoeia with effects of lowering qi and eliminating phlegm, and used for the treatment of pulmonary diseases. However, its protective mechanism on pulmonary diseases, especially acute lung injury (ALI), is still undefined. AIM OF THE STUDY: This study aimed to explore anti-inflammatory and anti-oxidation effects of IH and its underlying mechanism for treating ALI. MATERIALS AND METHODS: We constructed a lipopolysaccharide (LPS)-ALI mouse model to reveal the therapeutical effect of IH. Western blot, real-time quantitative PCR, flow cytometry, small RNA interference, immunohistochemical staining, and the dual-luciferase experiment were performed to study the mechanism of IH for treating ALI. RESULTS: IH attenuated LPS-mediated pathological changes (e.g. pneumonedema and pulmonary congestion) through inactivation of macrophages in an ALI mouse model. The result of flow cytometry demonstrated that IH regulated the homeostasis of M1 (CD80+CD206-) and M2 (CD80+CD206+) phenotype macrophages. Furthermore, IH suppressed mRNA expressions of M1 phenotype markers, such as iNOS and IL-6, whereas promoted mRNA expressions of M2 phenotype markers, such as ARG1 and RETNLA in LPS-mediated mice. Notably, IH targeted Keap1 to activate the Nrf2 receptor, exerting its anti-inflammatory and anti-oxidation effects proved by using immunohistochemical staining, dual-luciferase, and Keap1 knockdown technologies. CONCLUSION: These findings suggested that targeting Keap1 with IH alleviated LPS-mediated ALI, and it could serve as a herbal agent for developing anti-ALI drugs.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Luciferases , RNA Mensageiro
4.
Nat Prod Res ; : 1-7, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661314

RESUMO

2,7,2'-Trihydroxy-3,4,4'7'-tetramethoxy-1,1'-biphenanthrene (1), a previously undescribed biphenanthrene, and five known phenanthrenes, i.e. 2,5-dihydroxy-4-methoxy-9,10-dihydroxyphenanthrene (2), 2,4-dihydroxy -7-methoxy-9,10-dihydroxyphenanthrene (3), 7-hydroxy-2-methoxy-phenanthrene-1,4-dione (4), 7-hydroxy-2-methoxy-9,10-dihydro-phenanthrene-1,4-dione (5), and 4,4',7,7'-tetrahydroxy-2,2'-dimethoxy-9,9',10,10'-tetrahydro-1,1'-biphenanthrene (6) were isolated from the whole plant (stems, leaves, roots and fruits) of Liparis nervosa (Thunb.) Lindl., which is a medicinal plant of the genus Liparis in the Orchidaceae family. The structures of isolates were identified using spectroscopic methods, including NMR and mass spectrometry. Additionally, the cytotoxic potency of all the isolates against human lung cancer A549 cell line was evaluated by an MTT assay. All the isolated compounds showed cytotoxic activities with IC50 values in the range of 10.20 ± 0.81 to 42.41 ± 2.34 µM. The obtained data highlight the importance of L. nervosa as a source of natural lead compounds for cancer therapy.

5.
Front Nutr ; 10: 1183487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260518

RESUMO

Selenium is an essential trace element for the human body, with the chemical and physical characteristics of both metals and nonmetals. Selenium has bioactivities related to the immune system, antioxidation, anti-virus, and anti-cancer. At the same time, it also plays a role in reducing and alleviating the toxicity of heavy metals. Compared with inorganic selenium, organic selenium is less toxic and has greater bioavailability. Selenium nanoparticles (SeNPs) have the advantages of high absorption rate, high biological activity, and low toxicity, and can be directly absorbed by the human body and converted to organic selenium. Selenium nanoparticles have gradually replaced the traditional selenium supplement and has broad prospects in the food and medical industries. In this paper, the chemical, physical, and biological methods for the synthesis of selenium nanoparticles are reviewed, and the microbial synthesis methods of selenium nanoparticles, the effects of selenium nanoparticles on crop growth, and the antibacterial, antioxidant, anticancer, and anti-tumor effects of selenium nanoparticles are also systematically summarized. In addition, we evaluate the application of selenium nanoparticles in selenium nutrition enhancement, providing support for the application of selenium nanoparticles in animals, plants, and humans.

6.
Theriogenology ; 208: 88-101, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307736

RESUMO

Appropriate additives can provide a suitable physiological environment for storage of fish sperm and facilitate the large-scale breeding of endangered species and commercial fish. Suitable additives for fish sperm storage in vitro are required for artificial insemination. This study evaluate the effects of 0.1, 0.5, 1.5, and 4.5 mg/L selenium nanoparticles (SeNPs) on the quality of Schizothorax prenanti and Onychostoma macrolepis sperm storage in vitro at 4 °C for 72 h. We found that 0.5 mg/L SeNPs was a suitable concentration for maintaining the normal physiological state of O. macrolepis sperm during storage at 4 °C (p < 0.05). Higher adenosine triphosphate (ATP) content of O. macrolepis sperm before and after activation was present at that concentration. To further explore the potential mechanism of action of SeNPs on O. macrolepis sperm, western blotting and glucose uptake analyses were performed. The results implied that after 24 h of in vitro preservation, 0.5 mg/L SeNPs significantly improved p-AMPK levels and glucose uptake capacity of O. macrolepis sperm, while compound C (CC), the inhibitor of activated AMP-activated protein kinase (p-AMPK), significantly restricted the function of SeNPs on stored sperm. Similar effects of 0.5 mg/L SeNPs were found on Schizothorax prenanti sperm. Our study demonstrates that SeNPs maintained ATP content and O. macrolepis and Schizothorax prenanti sperm function during storage in vitro for 72 h, possibly because SeNPs enhanced the glucose uptake capacity of sperm by maintaining the level of p-AMPK.


Assuntos
Nanopartículas , Selênio , Masculino , Animais , Selênio/farmacologia , Proteínas Quinases Ativadas por AMP , Sêmen , Peixes , Trifosfato de Adenosina , Glucose
7.
Int J Biol Macromol ; 242(Pt 3): 124895, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196710

RESUMO

The remediation of heavy crude oil spills is a global challenge because frequent crude oil spills cause long-term damage to local living beings and marine ecosystems. Herein, a solar-driven and Joule-driven self-heated aerogel were developed as an all-weather adsorbent to efficiently absorb crude oil by obviously decreasing the viscosity of crude oil. The cellulose nanofiber (CNF)/MXene/luffa (CML) aerogel was fabricated via a simple freeze-drying method using CNF, MXene, and luffa as raw materials, and then coated with a layer of polydimethylsiloxane (PDMS) to make it hydrophobic and further increase oil-water selectivity. The aerogel can quickly reach 98 °C under 1 sun (1.0 kW/m2), which remains saturated temperature after 5 times photothermal heating/cooling cycles, indicating that the aerogel has great photothermal conversation capability and stability. Meanwhile, the aerogel can also rapidly rise to 110.8 °C with a voltage of 12 V. More importantly, the aerogel achieved the highest temperature of 87.2 °C under outdoor natural sunlight, providing a possibility for promising applications in practical situations. The remarkable heating capability enables the aerogel to decrease the viscosity of crude oil substantially and increase the absorption rate of crude oil by the physical capillary action. The proposed all-weather aerogel design provides a sustainable and promising solution for cleaning up crude oil spills.


Assuntos
Luffa , Nanofibras , Petróleo , Nanofibras/química , Celulose/química , Ecossistema , Tempo (Meteorologia)
8.
Plant Physiol Biochem ; 196: 381-392, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36746009

RESUMO

Flavonoids are important secondary metabolites in the plant growth and development process. As a medicinal plant, pigeon pea is rich in secondary metabolites. As a flavonoid, there are few studies on the regulation mechanism of naringenin in plant stress resistance. In our study, we found that naringenin can increase the pigeon pea's ability to tolerate salt and influence the changes that occur in flavonoids including naringenin, genistein and biochanin A. We analyzed the transcriptome data after 1 mM naringenin treatment, and identified a total of 13083 differentially expressed genes. By analyzing the metabolic pathways of these differentially expressed genes, we found that these differentially expressed genes were enriched in the metabolic pathways of phenylpropanoid biosynthesis, starch and sucrose metabolism and so on. We focused on the analysis of flavonoid biosynthesis related pathways. Among them, the expression levels of enzyme genes CcIFS, CcCHI and CcCHS in the flavonoid biosynthesis pathway had considerably higher expression levels. By counting the number of transcription factors and the binding sites on the promoter of the enzyme gene, we screened the transcription factors CcMYB62 and CcbHLH35 related to flavonoid metabolism. Among them, CcMYB62 has a higher expression level than the others. The hairy root transgene showed that CcMYB62 could induce the upregulation of CcCHI, and promote the accumulation of naringenin, genistein and biochanin A. Our study revealed the molecular mechanism of naringenin regulating flavonoid biosynthesis under salt stress in pigeon pea, and provided an idea for the role of flavonoids in plant resistance to abiotic stresses.


Assuntos
Cajanus , Cajanus/genética , Cajanus/química , Cajanus/metabolismo , Genisteína/metabolismo , Pisum sativum/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Phytomedicine ; 107: 154380, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36150346

RESUMO

BACKGROUND: Acute lung injury (ALI) is a severe respiratory disease characterized by diffuse lung interstitial and respiratory distress and pulmonary edema with a mortality rate of 35%-40%. Inula japonica Thunb., known as "Xuan Fu Hua" in Chinese, is a traditional Chinese medicine Inulae Flos to use for relieving cough, eliminating expectorant, and preventing bacterial infections in the clinic, and possesses an anti-pulmonary fibrosis effect. However, the effect and action mechanism of I. japonica on ALI is still unclear. PURPOSE: This study aimed to investigate the protective effect and underlying mechanism of total flavonoids of I. japonica (TFIJ) in the treatment of ALI. STUDY DESIGN AND METHODS: A mouse ALI model was established through administration of LPS by the intratracheal instillation. Protective effects of TFIJ in the inflammation and oxidative stress were studied in LPS-induced ALI mice based on inflammatory and oxidative stress factors, including MDA, MPO, SOD, and TNF-α. Lipid metabolomics, bioinformatics, Western blot, quantitative real-time PCR, and immunohistochemistry were performed to reveal the potential mechanism of TFIJ in the treatment of ALI. RESULTS: TFIJ significantly alleviated the interstitial infiltration of inflammatory cells and the collapse of the alveoli in LPS-induced ALI mice. Lipid metabolomics demonstrated that TFIJ could significantly affect the CYP2J/sEH-mediated arachidonic acid metabolism, such as 11,12-EET, 14,15-EET, 8,9-DHET, 11,12-DHET, and 14,15-DHET, revealing that sEH was the potential target of TFIJ, which was further supported by the recombinant sEH-mediated the substrate hydrolysis in vitro (IC50 = 1.18 µg/ml). Inhibition of sEH by TFIJ alleviated the inflammatory response and oxidative stress via the MAPK, NF-κB, and Nrf2 signaling pathways. CONCLUSION: These results demonstrated that TFIJ could suppress the sEH activity to stabilize the level of EETs, allowing the alleviation of the pathological course of lung injury in LPS-treated mice, which suggested that TFIJ could serve as the potential agents in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ácido Araquidônico/metabolismo , Expectorantes/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Phytomedicine ; 107: 154377, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36116200

RESUMO

BACKGROUND: Acute lung injury (ALI) is a life-threatening lung disease and characterized by pulmonary edema and atelectasis. Inula japonica Thunb. is a commonly used traditional Chinese medicine for the treatment of lung diseases. However, the potential effect and mechanism of total terpenoids of I. japonica (TTIJ) on ALI remain obscure. PURPOSE: This study focused on the protective effect of TTIJ on lipopolysaccharide (LPS)-induced ALI in mice and its potential mechanism. STUDY DESIGN AND METHODS: A mouse model of ALI was established by intratracheal instillation of LPS to investigate the protective effect of TTIJ. RNA-seq and bioinformatics were then performed to reveal the underlying mechanism. Finally, western blot and real-time qPCR were used to verify the effects of TTIJ on the inflammation and oxidative stress. RESULTS: TTIJ notably attenuated LPS-induced histopathological changes of lung. The RNA-seq result suggested that the protective effect of TTIJ on LPS-induced ALI were associated with the Toll-like receptor 4 (TLR4) and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling pathways. Pretreatment with TTIJ significantly reduced the inflammation and oxidative stress via regulating levels of pro-inflammatory and anti-oxidative cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), superoxide dismutase (SOD), and glutathione (GSH), in LPS-induced ALI mice. TTIJ treatment could suppress the cyclooxygenase-2 (COX-2) expression level and the phosphorylation of p65, p38, ERK, and JNK through the inactivation of the MAPK/NF-κB signaling pathway in a TLR4-independent manner. Meanwhile, TTIJ treatment upregulated expression levels of proteins involved in the Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1), NAD(P)H: quinoneoxidoreductase-1 (NQO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM), via activating the Nrf2 receptor, which was confirmed by the luciferase assay. CONCLUSION: TTIJ could activate the Nrf2 receptor to alleviate the inflammatory response and oxidative stress in LPS-induced ALI mice, which suggested that TTIJ could serve as the potential agent in the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Inula , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Terpenos/farmacologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Phytomedicine ; 104: 154341, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870376

RESUMO

BACKGROUND: Aging is an inevitable gradual process of the body, which can cause dysfunction or degeneration of the nervous or immune system, thus becoming a critical pathogenic factor inducing neurodegenerative diseases. Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C.A. Meyer exerted obvious memory-enhancing and anti-aging effects, and the simpler the structure of ginsenosides, the better the biological activity. Ginsenoside Rg2 (Rg2) is a prominent and representative panaxatriol-type ginsenoside produced during ginseng processing, which has been reported to have pretty good neuroprotective activity. PURPOSE: The work was aimed at exploring the therapeutic effects and possible molecular mechanisms of Rg2 by establishing the subacute brain aging model induced by D-galactose (D-gal) in mice. METHODS: The anti-aging activity of G-Rg2 (10, 20 mg/kg for 4 weeks) was assessed using the D-gal induced brain aging model (800 mg/kg for 8 weeks). The Morris water maze (MWM) and histopathological analysis were used to evaluate the cognitive function and pathological changes of the brain in mice, respectively. The protein expression levels of p53, p21, p16ink4α, IL-6, CDK4, ATG3, ATG5, ATG7, LC3, p62, LAMP2, and TFEB were quantified through western blot analysis. The degree of mitochondrial damage and the number of mitochondrial autophagolysosomes in hippocampal neurons were monitored using TEM analysis. RESULTS: The results showed that Rg2 could significantly restore D-gal-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Rg2 treatment also considerably decreased the over-expression of aging-related proteins such as p53/p21/p16ink4α induced by D-galactose, which demonstrated that Rg2 possessed good anti-aging activity. Meanwhile, Rg2 could evidently reduce the pathological changes caused by D-gal exposure. Moreover, the results from transmission electron microscopy and western blot analysis indicated that Rg2 could delay the brain aging induced by D-gal in mice via promoting the degradation of the autophagy substrate p62 while increasing the protein expression level of LAMP2/TFEB to maintain mitochondrial function. CONCLUSION: These results indicate that Rg2 could postpone brain aging by increasing mitochondrial autophagy flux to maintain mitochondrial function, which greatly enriched the research on the pharmacological activity of ginsenosides for delaying brain aging.


Assuntos
Ginsenosídeos , Panax , Envelhecimento , Animais , Autofagia , Galactose/farmacologia , Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Hipocampo , Camundongos , Mitocôndrias/metabolismo , Panax/química , Proteína Supressora de Tumor p53/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2880-2889, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35718508

RESUMO

Hepatitis B virus(HBV) is the pathogen causing hepatitis B, which is characterized by strong infectivity, high incidence, and widespread prevalence and has seriously threatened human health and affected their quality of life. Anti-HBV drugs in western medicine mainly include nucleosides(nucleic acids) and interferons, among which nucleosides(nucleic acids) are used more often. Due to the easy development of drug resistance, their therapeutic effects are not remarkable. Interferons can easily cause serious adverse reactions such as liver injury. Anti-HBV drugs in traditional Chinese medicine mainly include single Chinese herbs(Artemisiae Scopariae Herba, Artemisiae Annuae Herba, Salviae Miltiorrhizae Radix et Rhizoma, etc.) and Chinese herbal compounds(Yinchenhao Decoction, Xiaochaihu Decoction, Tiaogan Huaxian Pills, etc.), whose chemical compositions and action targets have not been fully identified. The combined medication is better than single medication, in that the former can improve drug resistance, make up each other's deficiencies, reduce adverse reactions, and prolong the action time. This study reviewed the anti-HBV activities and mechanisms of western drugs, Chinese herbs, and combined medications, in order to provide reference for the development and research of new anti-HBV drugs.


Assuntos
Medicamentos de Ervas Chinesas , Ácidos Nucleicos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Vírus da Hepatite B , Humanos , Interferons , Medicina Tradicional Chinesa , Nucleosídeos , Qualidade de Vida
14.
Anim Nutr ; 8(1): 235-248, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34988305

RESUMO

In recent years, high-fat diet (HFD) has been widely applied in aquaculture, which reduces the intestinal health of cultured fish. The current study evaluated the protective effects of nano-selenium (nano-Se) on intestinal health of juvenile grass carp (Ctenopharyngodon idella) fed with HFD. A total of 135 experimental fish were fed with a regular diet (Con), a HFD (HFD) and a HFD containing nano-Se at 0.6 mg/kg (HSe) for 10 weeks. The results showed that dietary nano-Se significantly improved the survival rate and feed efficiency which were reduced by HFD in juvenile grass carp (P < 0.05). Also, nano-Se (0.6 mg/kg) supplement alleviated intestinal damage caused by the HFD, thus maintaining the integrity of the intestine. Moreover, it significantly up-regulated the expression of genes related to tight junction (ZO-1, c laudin-3 and o ccludin), anti-oxidization (GPx4a andGPx4b), and the protein of ZO-1 in the intestine of juvenile grass carp, which were depressed by the HFD (P < 0.05). Furthermore, nano-Se supplementation significantly suppressed the expressions of genes related to the inflammation, including inflammatory cytokines (IL-8, IL-1ß, IFN-γ, TNF-α and IL-6), signaling molecules (TLR4, p38 MAPK and NF-κB p65), and protein expression of NF-κB p65 and TNF-α in the intestine of juvenile grass carp which were induced by the HFD (P < 0.05). Besides, dietary nano-Se normalized the intestinal microbiota imbalance of juvenile grass carp caused by the HFD through increasing the abundance of the beneficial bacteria, e.g., Fusobacteria. Finally, dietary nano-Se increased the production of short chain fatty acids (SCFA) in the intestine, especially for butyric acid and caproic acid, which were negatively related to the increase of intestinal permeability and inflammation. In summary, supply of nano-Se (0.6 mg/kg) in HFD could effectively alleviate intestinal injury of juvenile grass carp by improving intestinal barrier function and reducing intestinal inflammation and oxidative stress. These positive effects may be due to the regulation of nano-Se on intestinal microbiota and the subsequently increased beneficial SCFA levels.

15.
J Trace Elem Med Biol ; 69: 126880, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34717166

RESUMO

BACKGROUND: This updated and comprehensive meta-analysis study sought to explore the changes of seven essential trace elements, including selenium (Se), iron (Fe), zinc (Zn), manganese (Mn), fluorine (F), iodine (I) and copper (Cu) in Kashin-Beck disease (KBD) patients compared with healthy individuals. The findings of the current study will provide a valuable reference for implementation of early clinical intervention and prevention of KBD. METHODS: All related articles included in this review were retrieved from the following databases: Chinese National Knowledge Infrastructure (CNKI), Wan Fang Data, China Biology Medicine disc (CBM disc), PubMed and Web of Science up to April 30, 2020. The following combination keywords were used as the search criteria: "(Kashin-Beck disease OR KBD) AND ((selenium OR iron OR zinc OR manganese OR fluorine OR iodine OR copper) OR (Se OR Fe OR Zn OR Mn OR F OR I OR Cu))". All statistical analyses were performed using RevMan 5.3 and Stata 16.0 software. RESULTS: A total of 55 articles were included in the current study. Meta-analysis showed that the levels of serum Se (SMD = -2.37, 95 % CI: -1.58 to -0.72, P < 0.00001), hair Se (SMD = -2.19, 95 % CI: -3.05 to -1.33, P < 0.00001), urinary Se (SMD = -2.36, 95 % CI: -3.26 to -1.46, P < 0.00001) and erythrocyte Se (SMD = -5.12, 95 % CI: -9.55 to -0.69, P = 0.02) were significantly lower in KBD patients compared with the levels in healthy controls. Then, the findings showed that the levels of serum F (SMD = -0.58, 95 % CI: -1.04 to -0.12, P = 0.01) and hair I (SMD = -0.57, 95 % CI: -1.06 to -0.08, P = 0.02) in patients were substantially lower than that in controls. Analysis showed that the levels of hair Zn (SMD = 0.26, 95 % CI: 0.04 to 0.49, P = 0.02) and hair Mn (SMD = 0.55, 95 % CI: 0.24 to 0.85, P = 0.0005) were markedly higher in patients compared with the levels in healthy controls. Notably, urinary Se (AUC = 0.7851, P = 0.0235, Sensitivity = 81.82 %, Specificity = 81.82 %) showed a good diagnostic value for KBD. CONCLUSIONS: The findings of the current study showed that the levels of Se, serum F and hair I were lower in patients with KBD compared with those in healthy controls, whereas the levels of hair Zn and hair Mn were higher in KBD patients compared with the levels in controls. This outcome would be further validated in our future studies. Of note, these results indicated that Se, F and I deficiencies were associated with the pathogenesis of KBD.


Assuntos
Iodo , Doença de Kashin-Bek , Selênio , Oligoelementos , Cobre , Flúor , Humanos , Ferro , Manganês , Zinco
16.
J Trace Elem Med Biol ; 70: 126908, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902677

RESUMO

BACKGROUND: Selenium (Se) is a vital trace element playing its biological functions through selenoprotein, which has been implicated in various physiological and pathological processes. A growing number of studies indicate that low Se increases the risk of cardiovascular diseases (CVDs). This meta-analysis aimed to compare and analyze differences in Se levels between patients with heart failure (HF), myocardial infarction (MI), coronary heart disease (CHD), and healthy people. This will provide ideas with the potential to improve clinical intervention and prevention of CVDs. METHODS: The PubMed, Embase, Chinese National Knowledge Infrastructure (CNKI) and Chinese Biomedical databases were systematically searched for relevant publications until November 20, 2020. The following combination keywords were used: "(heart failure disease OR myocardial infarction OR coronary heart disease) AND (selenium OR Se)". The identified studies were screened against inclusion and exclusion criteria and extracted data were analyzed using RevMan5.3 and State 16.0 software. RESULTS: A total of 49 eligible studies (including 61 cohorts) were obtained. Results of the meta-analysis showed that there was a significant difference in Se levels between HF, MI, CHD patients and healthy people. The standard mean difference (SMD) level of Se in HF patients [SMD = -0.98, 95 % CI (-1.34, -0.62)], MI patients [MI: SMD = -3.46, 95 % CI (-4.43, -2.85)], and CHD patients [CHD: SMD = -0.47, 95 % CI (-0.64, -0.28)] were all significantly lower compared to healthy controls. Analysis of the correlation between Se level and publication year showed that SMD of Se levels in HF and controls was positively correlated with time. Se level was found to be a good diagnostic marker of MI (AUC = 0.7107, P = 0.0167, Sensitivity = 77.27 %, Specificity = 72.73 %). CONCLUSIONS: This meta-analysis shows that Se levels in patients with HF, MI, and CHD are generally lower compared with healthy controls. However, due to the small number of included studies, further studies are needed to confirm the present results.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Infarto do Miocárdio , Selênio , Oligoelementos , Doenças Cardiovasculares/diagnóstico , Humanos , Infarto do Miocárdio/prevenção & controle
17.
Eur J Pharmacol ; 908: 174375, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303666

RESUMO

AIMS: Hyperglycemia and insulin resistance drive intestinal barrier dysfunction in type 2 diabetes (T2DM). Vaccarin, the main active component in the semen of traditional Chinese medicine Vaccaria has a definite effect on T2DM mice. The purpose of this study was to investigate whether vaccarin can enhance the intestinal barrier function in T2DM. MAIN METHODS: The T2DM mice model was established by streptozocin and high-fat diet. Vaccarin at a dose of 1 mg/kg/day was administered. We evaluated the effects of vaccarin on gut microbiota and intestinal barrier function by 16S rRNA sequencing, Western blot, quantitative fluorescent PCR (qPCR), and morphological observation. Moreover, we constructed a single layer of the human intestinal epithelium model to determine the effect of vaccarin in vitro. RESULTS: The experimental results showed that vaccarin alleviated inflammatory mediators in serum and intestinal tissue of mice (P < 0.05), which may depend on the improvement of tight junctions and gut microbiota (P < 0.05). Activation of extracellular regulated protein kinases (Erk1/2) stimulated myosin light chain kinase (MLCK). By inhibiting ERK expression (P < 0.05), vaccarin had similar effects to ERK inhibitors. In addition, the regulation of tight junction barriers also involved the abovementioned pathways in vivo. CONCLUSION: Vaccarin could protect the intestinal barrier by inhibiting the ERK/MLCK signaling pathway and modulate the composition of the microbiota. These results suggested that vaccarin may be an effective candidate for improving intestinal barrier changes in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental , Camundongos , RNA Ribossômico 16S
18.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2547-2555, 2021 May.
Artigo em Chinês | MEDLINE | ID: mdl-34047102

RESUMO

The present work is to analyze the HPLC fingerprints of mulberry-sourced materials(Mori Ramulus, Mori Folium, Muri Cortex, Mori Fructus) using the fingerprint division total statistical moment method and information entropy, and to study the diffe-rences of the chemical components and the overall characteristics of the imprinting template in different parts of mulberry-sourced medicinal materials, so as to provide the basis for finding the effective substances in response to "homologous and different effect" of mulberry(Morus alba). The fingerprints of 24 batches of mulberry-related materials, such as Mori Ramulus, Mori Folium, Muri Cortex, Mori Fructus, were established, and the similarities and differences of the fingerprints were analyzed by calculating the division total statistical moment parameters and information entropy. The AUC_T, MCRT_T, VCRT_T and H values of 24 batches of mulberry-sourced materials were less than 0.05, with significant difference. Among them, all samples showed absorption peaks within 3-11, and 20-24 min, indicating that the four types had the identical or similar chemical composition in the same time period. After 34 min, none of the four types showed absorption peaks. Greater VCRT_T value of the fingerprints of the four kinds was observed at the retention time ranges of 3-4, 16-18, 25-27, and 31-32 min, indicating that the components of the four kinds were significantly different in these time periods; and VCRT_T value of the mulberry was significantly higher than that of the other three kinds of medicinal materials at the retention time windows of 3-4 and 15-17 min; the VCRT_T value of the mulberry white skin was significantly higher at the time windows of 8-10 and 28-30 min; the VCRT_T value of all four kinds was significantly higher within 21-23 min, indicating that the four herbs contain the same or similar components in the chromatogram during this period, but there may be significant differences between the content and the proportion. In addition, the information entropy of mulberry branches is the largest at 7-12, 23-27 min, and that of mulberry fruits is the largest at 2-8 min, which indicates that the components of mulberry branches and mulberry fruits respond greatly in the corresponding period of time, which is also the main peak period of their chemical components. For the chemical components and corresponding efficacy here. The results showed that there are significant differences in the components and contents of mulberry-sourced medicinal materials. The division total statistical moment and information entropy of the total amount of segments can be used to analyze the differences in the components of "homology and different effects", which could provide a more comprehensive analysis method for the determination of quality markers.


Assuntos
Morus , Cromatografia Líquida de Alta Pressão , Entropia , Frutas , Folhas de Planta
19.
Nat Prod Res ; 35(23): 4916-4921, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32208851

RESUMO

Goodyschle A (1), a new butenolide, was isolated from the whole grass of Goodyera schlechtendaliana, an orchidaceous edible medicinal plant. The structure of the new compound was elucidated by 1 D and 2 D NMR experiments in addition to HRESIMS analyses. Compound 1 was evaluated for its bioactivities including cytotoxic activity against human gastric cancer (SGC-7901) and human hepatocellular carcinoma (HepG2) cell lines, inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and DPPH radical scavenging activity. As a result, compound 1 showed potent BChE inhibitory activity (IC50 value = 6.88 ± 1.63 µM), moderate DPPH radical scavenging activity (IC50 value = 16.25 ± 0.21 µM), and slight AChE inhibitory and cytotoxic activities. These findings suggest that compound 1 is worthy for further investigations in terms of its selective BChE inhibitory activity.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , 4-Butirolactona/análogos & derivados , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Humanos , Relação Estrutura-Atividade
20.
Artigo em Chinês | WPRIM | ID: wpr-906130

RESUMO

Under the guidance of the theory of traditional Chinese medicine (TCM), charcoal drugs are widely used in clinical treatment of various bleeding syndromes, in addition, they also have the effect in anti-diarrhea and anti-ulcer, but charcoal drugs are especially effective in stopping bleeding. According to the changes in the properties after processing, the hemostatic effect of charcoal drugs can be roughly divided into two categories. One is not used for hemostasis itself, but used for hemostasis after processing. The other is used for hemostasis itself, and the drug properties are changed or the hemostatic ability is enhanced after processing. By summarizing researches on historical evolution, processing mechanism and pharmacological effects of the commonly used hemostatic charcoal drugs, the author found that preservation or increase of active substances after processing was closely related to the hemostatic effect of charcoal drugs. The hemostatic mechanism mainly involves the influence of coagulation system and platelet function, etc. At the same time, combined with the theory of Qi chromatograph of TCM supramolecular, this paper puts forward the supramolecular research strategy on hemostatic mechanism of charcoal drugs, in order to provide reference for revealing the scientific connotation of charcoal drugs for hemostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA