Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 3): 128082, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972838

RESUMO

This study investigated the effect of varying magnetic field intensities (ranging from 0 to 10 mT) on the quality characteristics of dough with 40 % potato pulp substitution (DPP). The results indicated that the DPP fermented with a 4 mT magnetic field exhibited a significant enhancement in the combination of water and substrate, thereby elevating the viscoelastic properties of DPP through reinforcing the stability of gluten network. Meanwhile, DPP treated with a 4 mT magnetic field exhibited the highest amount of disulfide bonds (11.64 µmol SS/g sample). This is accompanied by a prominent cross-linkage structure, as evidenced by SDS-PAGE and CLSM. Notably, the application of a magnetic field substantially augments the dough's capacity to retain gas during fermentation. In addition, the application of magnetic field significantly increased the wet gluten content (20.85 %, P < 0.05) in DPP, which improved tensile properties and an acceptable color profile. The introduction of a magnetic field induces gluten aggregation, which in turn results in heightened particle size distribution and ζ-potential values. In conclusion, this study emphasize the potential of magnetic field technology as a viable method to enhance the overall quality attributes of dough enriched with potato pulp substitution.


Assuntos
Glutens , Solanum tuberosum , Glutens/química , Farinha , Pão
2.
Front Genet ; 14: 1272016, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854059

RESUMO

Syndrome differentiation and treatment is the basic principle of traditional Chinese medicine (TCM) to recognize and treat diseases. Accurate syndrome differentiation can provide a reliable basis for treatment, therefore, establishing a scientific intelligent syndrome differentiation method is of great significance to the modernization of TCM. With the development of biomdical text mining technology, TCM has entered the era of intelligence that based on data, and model training increasingly relies on the large-scale labeled data. However, it is difficult to form a large standard data set in the field of TCM due to the low degree of standardization of TCM data collection and the privacy protection of patients' medical records. To solve the above problem, a multi-label deep forest model based on an improved multi-label ReliefF feature selection algorithm, ML-PRDF, is proposed to enhance the representativeness of features within the model, express the original information with fewer features, and achieve optimal classification accuracy, while alleviating the problem of high data processing cost of deep forest models and achieving effective TCM discriminative analysis under small samples. The results show that the proposed model finally outperforms other multi-label classification models in terms of multi-label evaluation criteria, and has higher accuracy in the TCM syndrome differentiation problem compared with the traditional multi-label deep forest, and the comparative study shows that the use of PCC-MLRF algorithm for feature selection can better select representative features.

3.
Phytomedicine ; 116: 154888, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257329

RESUMO

BACKGROUND: Zhi-Zi-Chi-Tang (ZZCT) is an effective traditional Chinese medicinal formula. ZZCT has been used for the treatment of depression for centuries. Its clinical efficacy in relieving depression has been confirmed. However, the molecular mechanisms of ZZCT regarding neuroplasticity in the pathogenesis of depression have not yet been elucidated. PURPOSE: The present study aimed to examine the effects of ZZCT on neuroplasticity in mice exposed to chronic unpredictable mild stress (CUMS), and to explore the underlying molecular mechanisms. METHODS: For this purpose, a murine model of depression was established using the CUMS procedure. Following the intragastric administration of ZZCT or fluoxetine, classic behavioral experiments were performed to observe the efficacy of ZZCT as an antidepressant. Immunofluorescence was used to label and quantify microtubule-associated protein (MAP2) and postsynaptic density protein (PSD95) in the hippocampus. Golgi staining was applied to visualize the dendritic spine density of neurons in the hippocampi. Isolated hippocampal slices were prepared to induce long-term potentiation (LTP) in the CA1 area. The hippocampal protein expression levels of glycogen synthase kinase-3ß (GSK-3ß), p-GSK-3ß (Ser9), cAMP response element binding protein (CREB), p-CREB (Ser133), brain-derived neurotrophic factor (BDNF) and 14-3-3ζ were detected using western blot analysis. The interaction of 14-3-3ζ and p-GSK-3ß (Ser9) was examined using co-immunoprecipitation. LV-shRNA was used to knockdown 14-3-3ζ by an intracerebroventricular injection. RESULTS: ZZCT (6 g/kg) and fluoxetine (20 mg/kg) alleviated depressive-like behavior, restored hippocampal MAP2+ PSD95+ intensity, and reversed the dendritic spine density of hippocampal neurons and LTP in the CA1 region of mice exposed to CUMS. Both low and high doses of ZZCT (3 and 6 g/kg) significantly promoted the binding of 14-3-3ζ to p-GSK-3ß (Ser9) in the hippocampus, and ZZCT (6 g/kg) significantly promoted the phosphorylation of GSK-3ß Ser9 and CREB Ser133 in the hippocampus. ZZCT (3 and 6 g/kg) upregulated hippocampal BDNF expression in mice exposed to CUMS. LV-sh14-3-3ξ reduced the antidepressant effects of ZZCT. CONCLUSION: ZZCT exerted antidepressant effects against CUMS-stimulated depressive-like behavior mice. The knockdown of 14-3-3ζ using lentivirus confirmed that 14-3-3ζ was involved in the ZZCT-mediated antidepressant effects through GSK-3ß/CREB/BDNF signaling. On the whole, these results suggest that the antidepressant effects of ZZCT are attributed to restoring damage by neuroplasticity enhancement via the 14-3-3ζ/GSK-3ß/CREB/BDNF signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fluoxetina , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Fluoxetina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/farmacologia , Antidepressivos/farmacologia , Plasticidade Neuronal/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo , Estresse Psicológico/tratamento farmacológico , Depressão/tratamento farmacológico , Depressão/metabolismo , Modelos Animais de Doenças
4.
Ultrason Sonochem ; 92: 106281, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36586338

RESUMO

Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the ß-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.


Assuntos
Glutens , Solanum tuberosum , Glutens/química , Solanum tuberosum/química , Pão/análise , Ultrassom , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor
5.
Front Pharmacol ; 13: 815413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401226

RESUMO

Background: Pilose antler peptide (PAP), prepared from the pilose antler of Cervus nippon Temminck, is widely used in traditional Chinese medicine (TCM) against various inflammatory disorders. TCM prescriptions containing pilose antler are often prescribed clinically to treat depression. However, the pharmacological mechanisms of how PAP, against inflammation, prevents and treats depression remain poorly understood. Methods: PAP was identified by de novo sequencing and database searching. Then, behavioral tests were conducted to investigate the effect of PAP on CUMS-exposed mice. In parallel, Nissl staining and Golgi-Cox staining were used for exploring the effect of PAP on neural cells and dendritic spine density. Additionally, the expression of key proteins of the AMPK/Sirt1/NF-κB/NLRP3 pathway was analyzed by Western blot. Finally, the CUMS procedure was conducted for 6 weeks. At the 5th week, PAP and fluoxetine (Flu) were intragastrically treated for 2 weeks. The silencing information regulator-related enzyme 1 (Sirt1) inhibitor EX-527 and the AMP-activated protein kinase (AMPK) inhibitor dorsomorphin were employed to investigate the effects of Sirt1 and AMPK on PAP-mediated depression. Results: PAP attenuated the behavior alteration caused by CUMS stimulation, decreased the number of neurons, and restored the dendritic spine density. PAP treatment effectively upregulated the expressions of p-AMPK and Sirt1 and suppressed the expressions of Ac-NF-κB, NLRP3, Ac-Caspase-1, GSDMD-N, Cleaved-IL-1ß, and Cleaved-IL-18. Moreover, selectively inhibited Sirt1 and AMPK were able to compromise the therapeutic effect of PAP on depression. Conclusion: The present work indicated that PAP has a protective effect on CUMS-induced depression. In addition, AMPK and Sirt1 played critical roles in the PAP-relieved depression. PAP might be a potential therapeutic option for treating depression.

6.
Phytomedicine ; 91: 153692, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411834

RESUMO

PURPOSE: Magnolol (MA) exhibits anti-depressant effect by inhibiting inflammation. However, its effect on microglia polarization remains not fully understood. Herein, our study was performed to evaluate the effect of MA on microglia polarization in chronic unpredictable mild stress (CUMS)-induced depression and explore its potential mechanism. STUDY DESIGN: The CUMS procedure was conducted, and the mice were intragastrically treated with MA. BV2 cells were pretreated with MA prior to LPS/ATP challenge. METHODS: The levels of TNF-α, IL-1ß, IL-6 and IL-4, IL-10 in brain and BV2 cells were examined by ELISA. The mRNA expressions of Arg1, Ym1, Fizz1 and Klf4 in brains were measured. ROS content was determined using flow cytometry. Immunofluorescence was employed to evaluate Iba-1 level, Nrf2 nuclear translocation, Iba-1+CD16/32+ and Iba-1+CD206+ cell population. The protein expressions of Nrf2, HO-1, NLRP3, caspase-1 p20 and IL-1ß in brains and BV2 cells were investigated by western blot. Nrf2 siRNA was induced in experiments to explore the role of Nrf2 in MA-mediated microglia polarization. The ubiquitination of Nrf2 was visualized by Co-IP. RESULTS: The treatment with MA notably relieved depressive like behaviors, suppressed pro-inflammatory cytokines, promoted anti-inflammatory cytokines and the transcription of M2 phenotype microglia-specific indicators. MA upregulated the expression of Nrf2, HO-1, downregulated the expression of NLRP3, caspase-1 p20, IL-1ß both in vivo and in vitro. MA also reduced ROS concentration, promoted Nrf2 nucleus translocation and prevented Nrf2 ubiquitination. Nrf2 Knockdown by siRNA abolished the MA-mediated microglia polarization. CONCLUSION: The present research demonstrated that MA attenuated CUMS-stimulated depression by inhibiting M1 polarization and inducing M2 polarization via Nrf2/HO-1/NLRP3 signaling.


Assuntos
Compostos de Bifenilo/farmacologia , Depressão/tratamento farmacológico , Lignanas/farmacologia , Microglia , Transdução de Sinais/efeitos dos fármacos , Animais , Polaridade Celular , Heme Oxigenase-1 , Fator 4 Semelhante a Kruppel , Lipopolissacarídeos , Proteínas de Membrana , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
7.
Hum Brain Mapp ; 39(5): 2224-2234, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29417705

RESUMO

Recent research has demonstrated that resting-state functional connectivity (RS-FC) within the human auditory cortex (HAC) is frequency-selective, but whether RS-FC between the HAC and other brain areas is differentiated by frequency remains unclear. Three types of data were collected in this study, including resting-state functional magnetic resonance imaging (fMRI) data, task-based fMRI data using six pure tone stimuli (200, 400, 800, 1,600, 3,200, and 6,400 Hz), and structural imaging data. We first used task-based fMRI to identify frequency-selective cortical regions in the HAC. Six regions of interest (ROIs) were defined based on the responses of 50 participants to the six pure tone stimuli. Then, these ROIs were used as seeds to determine RS-FC between the HAC and other brain regions. The results showed that there was RS-FC between the HAC and brain regions that included the superior temporal gyrus, dorsolateral prefrontal cortex (DL-PFC), parietal cortex, occipital lobe, and subcortical structures. Importantly, significant differences in FC were observed among most of the brain regions that showed RS-FC with the HAC. Specifically, there was stronger RS-FC between (1) low-frequency (200 and 400 Hz) regions and brain regions including the premotor cortex, somatosensory/-association cortex, and DL-PFC; (2) intermediate-frequency (800 and 1,600 Hz) regions and brain regions including the anterior/posterior superior temporal sulcus, supramarginal gyrus, and inferior frontal cortex; (3) intermediate/low-frequency regions and vision-related regions; (4) high-frequency (3,200 and 6,400 Hz) regions and the anterior cingulate cortex or left DL-PFC. These findings demonstrate that RS-FC between the HAC and other brain areas is frequency selective.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Vias Neurais/fisiologia , Estimulação Acústica , Adolescente , Adulto , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Psicoacústica , Descanso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA