Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 310: 116422, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36972781

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia lactiflora Pall has been used in Chinese Medicine for thousands of years, especially having anti-inflammatory, sedative, analgesic and other ethnic pharmacological effects. Moreover, Paeoniflorin is the main active ingredient of the Paeonia lactiflora Pall, and most are used in the treatment of inflammation-related autoimmune diseases. In recent years, studies have found that Paeoniflorin has a therapeutic effect on a variety of kidney diseases. AIM OF THE STUDY: Cisplatin (CIS) is limited in clinical use due to its serious side effects, such as renal toxicity, and there is no effective method for prevention. Paeoniflorin (Pae) is a natural polyphenol which has a protective effect against many kidney diseases. Therefore, our study is to explore the effect of Pae on CIS-induced AKI and the specific mechanism. MATERIALS AND METHODS: Firstly, CIS induced acute renal injury model was constructed in vivo and in vitro, and Pae was continuously injected intraperitoneally three days in advance, and then Cr, BUN and renal tissue PAS staining were detected to comprehensively evaluate the protective effect of Pae on CIS-induced AKI. We then combined Network Pharmacology with RNA-seq to investigate potential targets and signaling pathways. Finally, affinity between Pae and core targets was detected by molecular docking, CESTA and SPR, and related indicators were detected in vitro and in vivo. RESULTS: In this study, we first found that Pae significantly alleviated CIS-AKI in vivo and in vitro. Through network pharmacological analysis, molecular docking, CESTA and SPR experiments, we found that the target of Pae was Heat Shock Protein 90 Alpha Family Class A Member 1 (Hsp90AA1) which performs a crucial function in the stability of many client proteins including Akt. RNA-seq found that the KEGG enriched pathway was PI3K-Akt pathway with the most associated with the protective effect of Pae which is consistent with Network Pharmacology. GO analysis showed that the main biological processes of Pae against CIS-AKI include cellular regulation of inflammation and apoptosis. Immunoprecipitation further showed that pretreatment with Pae promoted the Hsp90AA1-Akt protein-protein Interactions (PPIs). Thereby, Pae accelerates the Hsp90AA1-Akt complex formation and leads to a significant activate in Akt, which in turn reduces apoptosis and inflammation. In addition, when Hsp90AA1 was knocked down, the protective effect of Pae did not continue. CONCLUSION: In summary, our study suggests that Pae attenuates cell apoptosis and inflammation in CIS-AKI by promoting Hsp90AA1-Akt PPIs. These data provide a scientific basis for the clinical search for drugs to prevent CIS-AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Cisplatino/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Inflamação/induzido quimicamente , Proteínas de Choque Térmico HSP90/uso terapêutico
2.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34253875

RESUMO

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Flavanonas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Podócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Flavanonas/administração & dosagem , Injeções Intraperitoneais , Glomérulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Relação Estrutura-Atividade
3.
Drug Des Devel Ther ; 11: 3221-3233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184392

RESUMO

Toll-like receptors (TLRs) may be involved in diabetic nephropathy (DN). Paeoniflorin (PF) is an effective Chinese traditional medicine with anti-inflammatory and immunoregulatory effects that may inhibit the TLR2 signaling pathway. In this study, we investigated the effects of PF on the kidneys of mice with streptozotocin-induced type 1 diabetes mellitus using TLR2 knockout mice (TLR2-/-) and wild-type littermates (C57BL/6J-WT). After 12 weeks of intraperitoneal injection of PF at doses of 25, 50, and 100 mg/kg once a day, diabetic mice had significantly reduced albuminuria and attenuated renal histopathology. These changes were associated with substantially alleviated macrophage infiltration and decreased expression of TLR2 signaling pathway biomarkers. These data support a role of TLR2 in promoting inflammation and indicate that the effect of PF is associated with the inhibition of the TLR2 pathway in the kidneys of diabetic mice. PF thus shows therapeutic potential for the prevention and treatment of DN.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/farmacologia , Monoterpenos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/patologia , Relação Dose-Resposta a Droga , Glucosídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Molecular , Monoterpenos/química , Estreptozocina , Relação Estrutura-Atividade , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/metabolismo
4.
J Ethnopharmacol ; 193: 377-386, 2016 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-27566204

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeoniflorin(PF), extracted from the root peeled of Paeonia lactiflora Pall(Family: Ranunculaceae), has therapeutic potential in many animal models of inflammatory diseases. AIM OF THE STUDY: Although the anti-inflammatory efficacy of PF has been well illustrated in several animal models, whether it could attenuate diabetic nephropathy and detailed mechanisms are still obscure. Till now, accumulating evidence has proposed the pivotal role of toll-like receptors (TLRs) in renal inflammation in diabetic patients. In this setting, the current study aimed to investigate the effects and underlying mechanism of PF on high glucose-induced activation of toll like-receptor 2 (TLR2) signaling in macrophages. MATERIALS AND METHODS: Bone marrow-derived macrophages (BMDM) were isolated from male Tlr2tm1kir (TLR2-/-) mice and wild-type littermates (C57BL/6JWT). The level of TLR2 and activation of downstream signaling were evaluated in response to 30mmol/L high glucose (HG)-containing medium. Macrophages behaviors, which include cell viability, migration and inflammatory cytokines production, were also determined. RESULTS: PF suppressed HG-induced production of TLR2, activation of downstream signaling and synthesis of inducible nitric oxide synthase (iNOS). PF could further inhibit MyD88-dependent pathway in HG-induced models in which TLR2 was knocked out. Moreover, deletion of TLR2 inhibited the HG-induced activation of MyD88-dependent pathway, but not TIR domain containing adapter inducing interferon-ß (Trif) signal pathway in BMDMs. As HG stimulation polarizes macrophages into M1 phenotype, treatment of PF or knockout of TLR2 significantly reduces M1 markers on the membrane of macrophages. Additionally, levels of inflammatory cytokines and iNOS were remarkably reduced in response to PF or TLR2 deficiency. CONCLUSION: Collectively, these data demonstrated that HG activated macrophages primarily through TLR2-dependent mechanisms which aggravated the severity of renal inflammation and eventually contributed to DN. Additionally, PF might be applied as a potential therapeutic agent in the battle against progressive DN.


Assuntos
Anti-Inflamatórios/farmacologia , Glucose/farmacologia , Glucosídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monoterpenos/farmacologia , Receptor 2 Toll-Like/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
5.
Phytomedicine ; 21(6): 815-23, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24462407

RESUMO

TLRs are a family of receptors that play a critical role in the pathogenesis of diabetic nephropathy. TGP have been shown to have anti-inflammatory and immuno-regulatory activities. However, the relation between TGP and TLRs on diabetic nephropathy remains unknown. In this study, we examined effects of TGP on immune regulatory TLR2 and 4 in the kidney from streptozotocin-induced diabetic rats. TGP decreased the levels of 24h urinary albumin excretion rate significantly in diabetic rats. Western blot analysis showed that TGP significantly inhibited the expression of TLR2 and 4, MyD88, p-IRAK1, NF-κB p65, p-IRF3, TNF-α and IL-1ß. Quantitative real-time PCR analysis showed that the significantly increased levels of TLR2 and 4, and MyD88mRNA in the kidneys of diabetic rats were significantly suppressed by TGP treatment. Macrophages infiltration were also markedly increased in the kidneys of the diabetic rats, but were significantly inhibited by TGP in a dose-dependent manner. These results suggest that TGP has protective effects on several pharmacological targets in the progress of diabetic nephropathy by selectively blocking TLRs activation in vivo.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos/uso terapêutico , Rim/efeitos dos fármacos , Paeonia/química , Fitoterapia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Albuminas/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Glucosídeos/farmacologia , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Mensageiro/metabolismo , Ratos Wistar
6.
Phytomedicine ; 20(10): 820-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664882

RESUMO

Breviscapine is a flavonoid extracted from a Chinese herb Erigeron breviscapus, previously it was shown that treatment with breviscapine attenuated renal injury in the diabetic rats. The purpose of this study was to investigate whether breviscapine combined with enalapril (an ACE inhibitor) have superior renoprotective effects against diabetic nephropathy. Rats were randomly separated into five groups: control, diabetes, diabetes treated with enalapril, diabetes treated with breviscapine, or diabetes treated with combined enalapril with breviscapine. Twenty-four hours urinary AER and the levels of 3-NT in renal tissue and MDA in renal tissue and urine as well as activities and expression of PKC in renal tissue were determined, and renal tissue morphology were observed by light microscopy after 8 weeks. Expression of TGFß1 protein was performed by immunohistochemistry method. Increased AER and kidney pathologic injury were attenuated by treatment with either enalapril or breviscapine and further reduced by the combination of the two. Elevated 3-NT in renal tissue and MDA levels in renal tissue and urine were reduced by enalapril or breviscapine and, more effectively, by combined enalapril with breviscapine. PKC activities and expression were higher in renal tissue in diabetic rats than those of the control group, which were reduced by both monotherapies, and further abrogated by combination therapy in both cases. Overexpression of TGFß1 protein observed in the glomeruli and tubulointerstitium of diabetic rats was attenuated by enalapril or breviscapine to a similar lever and further reduced by the combination of the two. The combination of enalapril and breviscapine confers superiority over monotherapies on renoprotection, which mechanism may be at least partly correlated with synergetic suppression on increased oxidative stress and PKC activities as well as overexpression of TGFß1 in renal tissue.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Nefropatias Diabéticas/prevenção & controle , Enalapril/uso terapêutico , Flavonoides/uso terapêutico , Rim/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Quimioterapia Combinada , Enalapril/farmacologia , Flavonoides/farmacologia , Rim/metabolismo , Rim/patologia , Masculino , Fitoterapia , Distribuição Aleatória , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética
7.
Am J Chin Med ; 40(3): 521-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745068

RESUMO

Total glucosides of paeony (TGP) is the major active constituent of Paeonia lactiflora Pall., which has shown renoprotection in experimental diabetic nephropathy. Activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) is an important mechanism by which hyperglycemia contributes to renal damage. Macrophages also play an essential role in the pathogenesis of diabetic nephropathy. Herein, we investigated the ability of TGP to modulate JAK2/STAT3 activation and macrophage proliferation in rats with streptozotocin (STZ)-induced diabetes. TGP (50, 100, and 200 mg/kg) was administered orally once a day for eight weeks. Levels of p-JAK2 and p-STAT3 were determined by Western blot analysis. Immunohistochemistry and double immunohistochemistry were used to identify p-STAT3, ED-1, PCNA/ED-1, and p-STAT3/ED-1-positive (+) cells. The elevated 24-h urinary albumin excretion rate was markedly attenuated by treatment with 50, 100, and 200 mg/kg TGP. Western blot analysis showed that the significantly increased levels of p-JAK2, p-STAT3 proteins in the kidneys of diabetic rats were significantly inhibited by 50, 100, and 200 mg/kg TGP treatment. The marked accumulation and proliferation of macrophages in diabetic kidneys were significantly inhibited by TGP treatment. ED-1+/p-STAT3+ cells were significantly increased in the kidneys from the model group but were significantly inhibited by TGP treatment. These results show that TGP significantly inhibited diabetic nephropathy progression and suggest that these protective effects are associated with the ability of TGP to inhibit the JAK2/STAT3 pathway and macrophage proliferation and action.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Glucosídeos/farmacologia , Janus Quinase 2/metabolismo , Rim/efeitos dos fármacos , Paeonia/química , Fitoterapia , Fator de Transcrição STAT3/metabolismo , Albuminúria/prevenção & controle , Animais , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/urina , Glucosídeos/uso terapêutico , Rim/citologia , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
8.
Phytomedicine ; 17(3-4): 254-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19758795

RESUMO

TGP, extracted from the traditional Chinese herb root of Paeonia lactiflora pall, has been shown to have therapeutic effect in experimental diabetic nephropathy. However, its mechanism is not fully understood. In this study, the effects of TGP on oxidative stress were investigated in the kidney of diabetic rats induced by streptozotocin. TGP (50, 100, 200mg/kg) was orally administered once a day for 8 weeks. TGP treatment in all three doses significantly lowered 24 h urinary albumin excretion rate in diabetic rats and attenuated glomerular volume. TGP treatment with 100 and 200mg/kg significantly reduced indices for tubulointerstitial injury in diabetic rats. The level of MDA was significantly increased in the kidney of diabetic rats and attenuated by TGP treatment at the dose of 200mg/kg. TGP treatment in a dose-dependent manner decreased the level of 3-NT protein of the kidney which increased under diabetes. T-AOC was significantly reduced in diabetic rat kidney and remarkably increased by TGP treatment at the dose of 100 and 200mg/kg. Activity of antioxidant enzyme such as SOD, CAT was markedly elevated by TGP treatment with 200mg/kg. Western blot analysis showed that p-p38 MAPK and NF-kappaB p65 protein expression increased in diabetic rat kidney, which were significantly decreased by TGP treatment. It seems likely that oxidative stress is increased in the diabetic rat kidneys, while TGP can prevent diabetes-associated renal damage against oxidative stress.


Assuntos
Antioxidantes/uso terapêutico , Nefropatias Diabéticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Glucosídeos/uso terapêutico , Rim/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Paeonia/química , Albuminúria/prevenção & controle , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Glucosídeos/farmacologia , Rim/metabolismo , Rim/patologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Fitoterapia , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Am J Chin Med ; 37(2): 295-307, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19507273

RESUMO

Total glucosides of paeony (TGP), extracted from the traditional Chinese herb root of Paeonia lactiflora pall, have been shown to have a therapeutic role in experimental diabetic nephropathy including albuminuria. Recent investigation has identified nephrin, a podocyte-specific transmembrane protein, as a key regulator in the pathogenesis of diabetic albuminuria. The aim of this study was to investigate whether TGP can attenuate albuminuria through prevention of nephrin loss in the experimental diabetic nephropathy. Fifty male Munich-Wistar rats were obtained from the Experimental Animal Center of Anhui Medical University. These rats were divided into 5 groups (n = 10); normal group, control diabetic group, and 3 TGP treated diabetic groups at different concentrations. Diabetes was induced by streptozotocin, and TGP (50, 100, 200 mg/kg) was orally administered to the 3 TGP treated diabetic groups once a day for 8 weeks, respectively. Blood glucose and 24 hour urinary albumin excretion rate (AER) were measured. The expressions of nephrin, tumor necrosis factor-alpha (TNF-alpha), NF-kappaB p65 and 3-nitrotyrosine (3-NT) protein were determined by immunoinfluorescence or Western blot analysis in the kidneys. Elevated AER was markedly attenuated by TGP treatment in diabetic rats. There was a finely dotted linear epithelial staining of nephrin in normal group glomeruli. In contrast, the staining of glomeruli from untreated diabetic rats was attenuated, more diapersed, and clustered. This diabetic-induced loss of glomerular nephrin expression was prevented in a large degree in TGP-treated diabetic rats. Western blot analysis showed that the expression of nephrin protein was reduced in the kidneys of diabetic rats, but significantly increased in the TGP treatment groups. The expressions of TNF-alpha, NF-kappaB p65 and 3-NT protein were significantly increased in the kidneys of diabetic rats, which were all significantly inhibited by TGP treatment. Our results showed that TGP could decrease AER in diabetic rat, and that its mechanism may be at least partly correlated with upregulation of the expression of nephrin in the kidney.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Paeonia/química , Animais , Western Blotting , Imunofluorescência , Rim/metabolismo , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA