Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Dis ; 8(2): e2584, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28151483

RESUMO

Immunotherapeutic approaches to manage patients with advanced gastrointestinal malignancies are desired; however, mechanisms to incite tumor-specific immune responses remain to be elucidated. Rose bengal (RB) is toxic at low concentrations to malignant cells and may induce damage-associated molecular patterns; therefore, we investigated its potential as an immunomodulator in colon cancer. Murine and human colon cancer lines were treated with RB (10% in saline/PV-10) for cell cycle, cell death, and apoptosis assays. Damage-associated molecular patterns were assessed with western blot, ELISA, and flow cytometry. In an immunocompetent murine model of colon cancer, we demonstrate that tumors regress upon RB treatment, and that RB induces cell death in colon cancer cells through G2/M growth arrest and predominantly necrosis. RB-treated colon cancer cells expressed distinct hallmarks of immunogenic cell death (ICD), including enhanced expression of calreticulin and heat-shock protein 90 on the cell surface, a decrease in intracellular ATP, and the release of HMGB1. To confirm the ICD phenotype, we vaccinated immunocompetent animals with syngeneic colon cancer cells treated with RB. RB-treated tumors served as a vaccine against subsequent challenge with the same CT26 colon cancer tumor cells, and vaccination with in vitro RB-treated cells resulted in slower tumor growth following inoculation with colon cancer cells, but not with syngeneic non-CT26 cancer cells, suggesting a specific antitumor immune response. In conclusion, RB serves as an inducer of ICD that contributes to enhanced specific antitumor immunity in colorectal cancer.


Assuntos
Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Rosa Bengala/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Calreticulina/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Células HCT116 , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Células HT29 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Necrose/tratamento farmacológico , Necrose/imunologia , Necrose/metabolismo
2.
Arch Immunol Ther Exp (Warsz) ; 64(5): 417-23, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27197661

RESUMO

Program death-1 (PD-1) is a co-inhibitory receptor inducibly expressed on activated T cells. PD-1 has been reported to be associated with the development of several autoimmune diseases including rheumatoid arthritis, but the precise cellular and molecular mechanisms have not been fully elucidated. To study the role of PD-1 in the pathogenesis of rheumatoid arthritis and the possible underlying mechanisms, we performed collagen-induced arthritis (CIA) in C57BL/6 mice. Here, we show that PD-1 deficiency leads to the development of severe CIA in mice. When analyzing T cells from CIA mice ex vivo, we noticed aberrant antigen-specific Th17 responses in mice lacking PD-1. This is possibly due to deregulated activation of PKC-θ and Akt. In support of this notion, treating Pdcd1 (-/-) mice with an inhibitor of PI3-kinase that is upstream of PKC-θ and Akt significantly suppressed the disease severity. Therefore, our data indicate that PD-1 dampens antigen-specific Th17 response, thus inhibiting the disease.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Células Th17/citologia , Animais , Artrite/imunologia , Artrite/metabolismo , Artrite Experimental , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colágeno/química , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação
3.
Am J Physiol Endocrinol Metab ; 287(4): E744-9, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15165995

RESUMO

As the fourth most abundant anion in the body, sulfate plays an essential role in numerous physiological processes. One key protein involved in transcellular transport of sulfate is the sodium-sulfate cotransporter NaSi-1, and previous studies suggest that vitamin D modulates sulfate homeostasis by regulating NaSi-1 expression. In the present study, we found that, in mice lacking the vitamin D receptor (VDR), NaSi-1 expression in the kidney was reduced by 72% but intestinal NaSi-1 levels remained unchanged. In connection with these findings, urinary sulfate excretion was increased by 42% whereas serum sulfate concentration was reduced by 50% in VDR knockout mice. Moreover, levels of hepatic glutathione and skeletal sulfated proteoglycans were also reduced by 18 and 45%, respectively, in the mutant mice. Similar results were observed in VDR knockout mice after their blood ionized calcium levels and rachitic bone phenotype were normalized by dietary means, indicating that vitamin D regulation of NaSi-1 expression and sulfate metabolism is independent of its role in calcium metabolism. Treatment of wild-type mice with 1,25-dihydroxyvitamin D3 or vitamin D analog markedly stimulated renal NaSi-1 mRNA expression. These data provide strong in vivo evidence that vitamin D plays a critical role in sulfate homeostasis. However, the observation that serum sulfate and skeletal proteoglycan levels in normocalcemic VDR knockout mice remained low in the absence of rickets and osteomalacia suggests that the contribution of sulfate deficiency to development of rickets and osteomalacia is minimal.


Assuntos
Calcitriol/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Homeostase/fisiologia , Sulfatos/metabolismo , Simportadores/metabolismo , Vitamina D/fisiologia , Animais , Northern Blotting , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proteínas de Transporte de Cátions/genética , Núcleo Celular/metabolismo , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Matriz Extracelular/metabolismo , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteoglicanas/metabolismo , RNA/biossíntese , RNA/isolamento & purificação , Receptores de Calcitriol/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cotransportador de Sódio-Sulfato , Sulfatos/sangue , Sulfatos/urina , Simportadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA