RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: In elderly people, Alzheimer's disease (AD) is the most common form of dementia. It has been shown that traditional Chinese medicine (TCM) based on phytomedicines enhances the therapeutic effects of modern medicine when taken in conjunction with them. Modern medicine N-methyl-D-aspartate receptor (NMDA) antagonist memantine (Mm) are mainly used in the clinical treatment of AD. TCM Cerebralcare Granule® (CG) has long been an effective treatment for headaches, dizziness, and other symptoms. In this study, we employ a blend of CG and Mm to address Alzheimer's disease-like symptoms and explore their impacts and underlying mechanisms. AIM OF THE STUDY: The objective of our study was to observe the effects of CG combined with Memantine (Mm) on learning and memory impairment of AD mice induced by D-galactose and to explore the mechanism at work. MATERIALS AND METHODS: CG and Mm were combined to target multiple pathological processes involved in AD. For a thorough analysis, we performed various experiments such as behavioral detection, pathological detection, proteomic detection, and other experimental methods of detection. RESULTS: It was found that the combination of CG and Mm was significantly effective for improving learning and memory in AD mice as well as brain pathology. The serum and hippocampal tissue of AD mice were significantly enhanced with catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities and malondialdehyde (MDA) levels were decreased with this treatment. In AD mice, a combination of Mm and CG (CG + Mm) significantly increased the levels of the anti-inflammatory factors IL-4 and IL-10, decreased the levels of pro-inflammatory factors (IL-6, IL-1ß) and tumor necrosis factor-alpha (TNF-α), improved synaptic plasticity by restoring synaptophysin (SYP) and postsynaptic density protein-95 (PSD-95) expression in the hippocampus, enhanced Aß phagocytosis of microglia in AD mice, and increased mitochondrial respiratory chain enzyme complexes I, II, III, and IV, lead to an increase in the number of functionally active NMDA receptors in the hippocampus. Proteomic analysis GO analysis showed that the positive regulation gene H3BIV5 of G protein coupled receptor signal pathway and synaptic transmission was up-regulated, while the transsynaptic signal of postsynaptic membrane potential and regulation-related gene Q5NCT9 were down-regulated. Most proteins showed significant enriched signal transduction pathway profiles after CG + Mm treatment, based on the KEGG pathway database. CONCLUSION: The data supported the idea that CG and Mm could be more effective in treating AD mice induced by D-galactose than Mm alone. We provided a basis for the clinical use of CG with Mm.
Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Idoso , Doença de Alzheimer/metabolismo , Memantina/efeitos adversos , Galactose , Proteômica , Hipocampo , Antioxidantes/farmacologiaRESUMO
Cancer cells consume considerable glucose quantities and majorly employ glycolysis for ATP generation. This metabolic signature (the Warburg effect) allows cancer cells to channel glucose to biosynthesis to support and maintain their dramatic growth along with proliferation. Currently, our understanding of the metabolic and mechanistic implications of the Warburg effect along with its relationship with biosynthesis remains unclear. Herein, we illustrate that the tumor repressor p53 mediate Magnolol (MAG) triggers colon cancer cell apoptosis. And MAG regulates the glycolytic and oxidative phosphorylation steps through transcriptional modulation of its downstream genes TP53-induced glycolysis modulator and biosynthesis of cytochrome c oxidase, attenuating cell proliferation and tumor growth in vivo and in vitro. Meanwhile, we show that MAG cooperates with its own intestinal microflora characteristic metabolites to repress tumors, especially remarkably declined kynurenine (Kyn)/tryptophan (Trp) ratio. Besides, strong relationships of MAG influenced genes, microbiota, as well as metabolites, were explored. Therefore, we established that p53-microbiota-metabolites function as a mechanism, which enable therapy approaches against metabolism-implicated colorectal cancer, in particular MAG as a prospective candidate for treating colorectal cancer.
RESUMO
Acute kidney injury (AKI) is a complex and heterogeneous disease with high incidence and mortality, posing a serious threat to human life and health. Usually, in clinical practice, AKI is caused by crush injury, nephrotoxin exposure, ischemia-reperfusion injury, or sepsis. Therefore, most AKI models for pharmacological experimentation are based on this. The current research promises to develop new biological therapies, including antibody therapy, non-antibody protein therapy, cell therapy, and RNA therapy, that could help mitigate the development of AKI. These approaches can promote renal repair and improve systemic hemodynamics after renal injury by reducing oxidative stress, inflammatory response, organelles damage, and cell death, or activating cytoprotective mechanisms. However, no candidate drugs for AKI prevention or treatment have been successfully translated from bench to bedside. This article summarizes the latest progress in AKI biotherapy, focusing on potential clinical targets and novel treatment strategies that merit further investigation in future pre-clinical and clinical studies.
Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Sepse , Humanos , Injúria Renal Aguda/terapia , Rim/metabolismo , Morte Celular , Sepse/terapia , Terapia Biológica/efeitos adversosRESUMO
BACKGROUND: There is no doubt that Alzheimer's disease (AD) is one of the greatest threats facing mankind today. Within the next few decades, Acetylcholinesterase inhibitors (AChEIs) will be the most widely used treatment for Alzheimer's disease. The withdrawal of the first generation AChEIs drug Tacrine (TAC)/ Cognex from the market as a result of hepatotoxicity has always been an interesting case study. Rosmarinic acid (RA) is a natural compound of phenolic acids that has pharmacological activity for inhibiting Alzheimer's disease, as well as liver protection. PURPOSE AND STUDY DESIGN: In this study, we determined that RA can reduce the hepatotoxicity of TAC, and both of them act synergistically to inhibit the progression of AD in mice. METHODS: In addition to the wild type mice (WT) group, the 6-month-old APP/PS1 (APPswe/PSEN1dE9) double-transgenic (Tg) mice were randomly divided into 6 groups: Tg group, TAC group, RA group, TAC+Silymarin (SIL) group, TAC+RA-L (Rosmarinic Acid Low Dose) goup and TAC+RA-H (Rosmarinic Acid High Dose) group. A series of experiments were carried out, including open field test, Morris water maze test, Hematoxylin - Eosin (HE) staining, Nissl staining, biochemical analysis, immunofluorescence analysis, western blotting analysis and so on. RESULTS: RA combined with TAC could enter the brain tissue of AD mice, and the combination of drugs could better improve the cognitive behavior and brain pathological damage of AD mice, reduce the expression of A ß oligomer, inhibit the deposition of A ß, inhibit the activity of AChE and enhance the level of Ach in hippocampus. Both in vivo and in vitro experiments showed that RA could alleviate the hepatotoxicity or liver injury induced by TAC. The Western blot analysis of the liver of AD mice showed that RA combined with TAC might inhibit the apoptosis of Bcl-2/Bax, reduce the programmed apoptosis mediated by caspase-3 and reduce the burden of liver induced by TAC, could inhibit the development of liver apoptosis by alleviating the hepatotoxicity of TAC and inhibiting the phosphorylation of JNK. CONCLUSION: The potential drug combination that combines rosmarinic acid with tacrine could reduce tacrine's hepatotoxicity as well as enhance its therapeutic effect on Alzheimer's disease.
Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Animais , Doença de Alzheimer/metabolismo , Tacrina/farmacologia , Tacrina/uso terapêutico , Acetilcolinesterase/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides , Ácido RosmarínicoRESUMO
OBJECTIVE@#To test the hypothesis that β -glucan enhances protective qi (PQi), an important Chinese medicine (CM) concept which stipulates that a protective force circulates throughout the body surface and works as the first line of defense against "external pernicious influences".@*METHODS@#A total of 138 participants with PQi deficiency (PQD) were randomized to receive β -glucan (200 mg daily) or placebo for 12 weeks. Participants' PQi status was assessed every 2 weeks via conventional diagnosis and a standardized protocol from which a PQD severity and risk score was derived. Indices of participants' immune and general health status were also monitored, including upper respiratory tract infection (URTI), saliva secretory IgA (sIgA), and self-reported measures of physical and mental health (PROMIS).@*RESULTS@#PQi status was not significantly different between the β -glucan and placebo treatment groups at baseline but improved significantly in the β -glucan (vs. placebo) group in a time-dependent manner. The intergroup differences [95% confidence interval (CI)] in severity score (scale: 1-5), risk score (scale: 0-1), and proportion of PQD participants (%) at finish line was 0.49 (0.35-0.62), 0.48 (0.35-0.61), and 0.36 (0.25-0.47), respectively. Additionally, β -glucan improved URTI symptom (scale: 1-9) and PROMIS physical (scale: 16.2-67.7) and mental (scale: 21.2-67.6) scores by a magnitude (95% CI) of 1.0 (0.21-1.86), 5.7 (2.33-9.07), and 3.0 (20.37-6.37), respectively, over placebo.@*CONCLUSIONS@#β -glucan ameliorates PQi in PQD individuals. By using stringent evidence-based methodologies, our study demonstrated that Western medicine-derived remedies, such as β -glucan, can be employed to advance CM therapeutics. (ClinicalTrial.Gov registry: NCT03782974).
Assuntos
Adulto , Humanos , Método Duplo-Cego , Qi , Fatores de Risco , Autorrelato , beta-Glucanas/uso terapêuticoRESUMO
AIMS: Clinically, Cerebralcare Granule® (CG) has been widely utilized to treat various types of headache, chronic cerebral insufficiency and other diseases, and the effect is significant. Clinical studies have shown that CG can significantly relieve vascular dementia (VaD), however, the molecular mechanisms haven't been established. To clear the therapeutic mechanisms of CG against VaD, a hypothesis was proposed that CG could treat neurovascular injury by inhibiting the production of lipocalin-2 (LCN 2). MAIN METHODS: 90 dementia rats were selected by water maze test and randomly divided into 6 groups, including nimodipine (NM), CG L (low dose) (0.314 g kg-1), CG H (high dose) (0.628 g kg-1), and combined group (CG + NM). And in vitro neuronal cell OGD modeling to evaluate the effect of CG on JAK2/STAT3. KEY FINDINGS: CG could significantly shorten the escape latency of two-vessel occlusion (2-VO) rats, increase their exploratory behavior, alleviate the symptoms of VaD and improve the ultrastructural pathological damage of neurovascular unit and accelerate the recovery of cerebral blood perfusion. CG combined with NM is better than NM alone. It was further showed that CG could inhibit the pathogenicity of LCN 2 through JAK2/STAT3 pathway and suppress the production of inflammatory cytokines. It plays a role in the protection of cerebral microvasculature and BBB in 2-VO rats. SIGNIFICANCE: Taken together, there data has supported notion that CG can protect the integrity of cerebral blood vessels and BBB and improve cognitive impairment through mainly inhibiting LCN 2, which provides scientific evidence for clinical application.
Assuntos
Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/metabolismo , Lipocalina-2/metabolismo , Animais , Artérias Carótidas/efeitos dos fármacos , China , Disfunção Cognitiva/fisiopatologia , Demência Vascular/prevenção & controle , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Lipocalina-2/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nimodipina/metabolismo , Nimodipina/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
Citrus is one of the main fruits processed worldwide, producing a lot of industrial by-products. As the main part of citrus "residue", citrus peels have a wide application prospect. They could not only be directly used to produce various food products, but also be used as promising biofuels to produce ethanol and methane. Additionally, functional components (flavonoids, limonoids, alkaloids, essential oils and pectin) extracted from citrus peels have been related to the improvement of human health against active oxygen, inflammatory, cancer and metabolic disorders. Therefore, it is clear that the citrus peels have great potential to be developed into useful functional foods, medicines and biofuels. This review systematically summarizes the recent advances in current uses, processing, bioactive components and biological properties of citrus peels. A better understanding of citrus peels may provide reference for making full use of it.
Assuntos
Citrus , Óleos Voláteis , Flavonoides , Frutas , Humanos , PectinasRESUMO
BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory deficits and cognitive decline. Current drugs can only relieve symptoms, but cannot really cure AD. Cerebralcare Granule® (CG) is a Traditional Chinese medicine (TCM) containing a variety of biologically active compounds. In our previous studies, CG has shown a beneficial effect against memory impairment in mice caused by D-galactose. However, whether CG can be used as a complementary medicine for the treatment of AD remains unexplored. Here, we use a combination of CG and memantine hydrochloride (Mm) to treat Alzheimer-like pathology and investigate the effects and mechanisms in vivo. METHODS: The histology of brain was examined with Hematoxylin-eosin (HE) staining, Golgi staining and Thioflavin S staining. ELISA was applied to assess the expression levels or activities of CAT, SOD, GSH-Px, MDA, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL) in serum, as well as the levels of IL-6, IL-1ß, and TNF-α in the mice brain. Western blotting was used to assess the expression of ß-secretase (BACE1), amyloid precursor protein (APP), APPß, APPα, synaptophysin (SYN), growth-associated protein 43 (GAP43), and postsynaptic density 95 (PSD95). RESULTS: In the present study, the combination group (CG + Mm) significantly attenuated Alzheimer-like behavior without adverse effects in APP/PS1 mice, indicating its high degree of safety and efficacy after long-term treatment. CG + Mm reduced AD pathological biomarker Aß plaque accumulation by inhibiting BACE1 and APP expression (P < 0.05 or P < 0.001). Besides, the combination group markedly inhibited the levels of IL-1ß, IL-6, and TNF-α in hippocampus (P < 0.001), as well as activities of SOD, CAT, and GSH-Px in serum (P < 0.001). By contrast, the combination group improved synaptic plasticity by enhancing SYN, PSD95, and GAP43 expression. CONCLUSIONS: Taken together, these data supported the notion that CG combined with Mm might ameliorate the cognitive impairment through multiple pathways, suggesting that CG could play a role as complementary medicine to increase anti-AD effect of chemical drugs by reducing Aß deposition, neuroinflammation, oxidative damage, and improving synaptic plasticity.
RESUMO
BACKGROUND: Cardiac fibrosis occurs in ischemic and non-ischemic heart failure, hereditary cardiomyopathy, diabetes and aging. Energy metabolism, which serves a crucial function in the course and treatment of cardiovascular diseases, might have therapeutic benefits for myocardial fibrosis. Ginsenoside Rb3 (G-Rb3) is one of the main components of Ginseng and exhibits poor oral bioavailability but still exerts regulate energy metabolism effects in some diseases. Therefore, the study investigated the effect of chitosan (CS) @ sodium tripolyphosphate (TPP) nanoparticles conjugation with ginsenoside Rb3 (NpRb3) on myocardial fibrosis and studied its possible mechanisms. The results showed that NpRb3 directly participates in the remodeling of myocardial energy metabolism and the regulation of perixisome proliferation-activated receptor alpha (PPARα), thereby improving the degree of myocardial fibrosis. The study also verifies the protective effect of NpRb3 on energy metabolism and mitochondrial function by targeting the PPARα pathway. Therefore, the prepared nanodrug carrier may be a potential solution for the delivery of G-Rb3, which is a promising platform for oral treatment of myocardial fibrosis.