Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 609(7929): 964-968, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171375

RESUMO

Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).


Assuntos
Fósseis , Dente , Vertebrados , Animais , China , Peixes/anatomia & histologia , História Antiga , Filogenia , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação
2.
Nat Commun ; 3: 1160, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093197

RESUMO

Recent discoveries of advanced fish-like stem-tetrapods (for example, Panderichthys and Tiktaalik) have greatly improved our knowledge of the fin-to-limb transition. However, a paucity of fossil data from primitive finned tetrapods prevents profound understanding of the acquisition sequence of tetrapod characters. Here we report a new stem-tetrapod (Tungsenia paradoxa gen. et sp. nov.) from the Lower Devonian (Pragian, ∼409 million years ago) of China, which extends the earliest record of tetrapods by some 10 million years. Sharing many primitive features with stem-lungfishes, the new taxon further fills in the morphological gap between tetrapods and lungfishes. The X-ray tomography study of the skull depicts the plesiomorphic condition of the brain in the tetrapods. The enlargement of the cerebral hemispheres and the possible presence of the pars tuberalis in this stem-tetrapod indicate that some important brain modifications related to terrestrial life had occurred at the beginning of the tetrapod evolution, much earlier than previously thought.


Assuntos
Peixes/anatomia & histologia , Fósseis , Nadadeiras de Animais/anatomia & histologia , Animais , Evolução Biológica , China , Extremidades/anatomia & histologia , História Antiga , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA