Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 4987-5009, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693885

RESUMO

Exosomes are small extracellular vesicles, ranging in size from 30-150nm, which can be derived from various types of cells. In recent years, mammalian-derived exosomes have been extensively studied and found to play a crucial role in regulating intercellular communication, thereby influencing the development and progression of numerous diseases. Traditional Chinese medicine has employed plant-based remedies for thousands of years, and an increasing body of evidence suggests that plant-derived exosome-like nanovesicles (PELNs) share similarities with mammalian-derived exosomes in terms of their structure and function. In this review, we provide an overview of recent advances in the study of PELNs and their potential implications for human health. Specifically, we summarize the roles of PELNs in respiratory, digestive, circulatory, and other diseases. Furthermore, we have extensively investigated the potential shortcomings and challenges in current research regarding the mechanism of action, safety, administration routes, isolation and extraction methods, characterization and identification techniques, as well as drug-loading capabilities. Based on these considerations, we propose recommendations for future research directions. Overall, our review highlights the potential of PELNs as a promising area of research, with broad implications for the treatment of human diseases. We anticipate continued interest in this area and hope that our summary of recent findings will stimulate further exploration into the implications of PELNs for human health.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Animais , Comunicação Celular , Medicina Tradicional Chinesa , Circulação Pulmonar , Mamíferos
2.
J Ethnopharmacol ; 287: 114943, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-34954266

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Di'ao Xinxuekang capsule (DXXK) extracted from Dioscorea nipponica Makino is a well-known traditional Chinese herbal medicinal product widely used in the treatment of cardiovascular disease, such as myocardial ischemia and arrhythmia. The active ingredients of DXXK were also traditionally utilized for treating cardiovascular disease in the former Soviet Union after the 1960s. As a specific type of cardiovascular disease, doxorubicin (DOX)-induced cardiotoxicity is characterized by arrhythmia, myocardial ischemia, and heart failure. AIM OF THE STUDY: This study aimed to investigate the potential protective effect of DXXK against chronic cardiotoxicity induced by DOX. MATERIALS AND METHODS: A mouse model of chronic cardiotoxicity induced by DOX and an in vitro model of DOX-induced myocardial damage were created to assess the protective effect of DXXK. Cardiac functional parameters, serum levels of CK-MB and LDH and cardiac histopathological indicators were determined in the mouse model. Moreover, cell viability was measured by the MTT method, and the effect of DXXK on the anticancer activity of DOX was also investigated by utilizing 4T1, HepG2, and H460 cell lines. Furthermore, the levels of markers of oxidative stress indexes (SOD, GSH, MDA) and inflammation (TNF-α, IL-1α) were measured using biochemical and Elisa kits, respectively. The level of ROS in H9c2 cardiomyocyte was determined by flow cytometry. The protein expression levels of HIF-1α and NF-κB p65 were measured by western blotting. Finally, molecular docking was performed to visualize the patterns of interactions between the effective molecule and targeted protein. RESULTS: DXXK alleviated DOX-induced chronic cardiotoxicity as shown by the reversal of changes in levels of myocardial enzymes and left ventricular function and structure. DXXK exhibits antioxidant and anti-inflammatory activities. We also observed that DXXK might increase the protein expression level of HIF-1α and decrease the protein expression level of NF-κB p65. Further results of in vitro experiments showed that DXXK could protect cardiomyocyte against DOX-induced production of ROS, but DXXK had no effect on the anticancer activity of DOX. The results of molecular docking showed that dioscin and pseudoprotodioscin were the top two compounds of DXXK, which had high affinity with HIF-1α and NF-κB p65. CONCLUSIONS: Our results indicated that DXXK could protect against cardiotoxicity induced by DOX and alleviate oxidative stress and inflammation in vivo and in vitro via the regulation of HIF-1α and down NF-κB p65.


Assuntos
Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antibióticos Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Cardiotoxicidade/etiologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Células Hep G2 , Humanos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
3.
J Ethnopharmacol ; 274: 114018, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33716083

RESUMO

BACKGROUND AND ETHNOPHARMACOLOGICAL RELEVANCE: Dioscin and diosgenin derived from plants of the genus Dioscoreaceae such as D. nipponica and D. panthaica Prain et Burk. Were utilized as the main active ingredients of traditional herbal medicinal products for coronary heart disease in the former Soviet Union and China since 1960s. A growing number of research showed that dioscin and diosgenin have a wide range of pharmacological activities in heart diseases. AIM OF THE STUDY: To summarize the evidence of the effectiveness of dioscin and diosgenin in cardiac diseases, and to provide a basis and reference for future research into their clinical applications and drug development in the field of cardiac disease. METHODS: Literatures in this review were searched in PubMed, ScienceDirect, Google Scholar, China National Knowledge Infrastructure (CNKI) and Web of Science. All eligible studies are analyzed and summarized in this review. RESULTS: The pharmacological activities and therapeutic potentials of dioscin and diosgenin in cardiac diseases are similar, can effectively improve hypertrophic cardiomyopathy, arrhythmia, myocardial I/R injury and cardiotoxicity caused by doxorubicin. But the bioavailability of dioscin and diosgenin may be too low as a result of poor absorption and slow metabolism, which hinders their development and utilization. CONCLUSION: Dioscin and diosgenin need further in-depth experimental research, clinical transformation and structural modification or research of new preparations before they can be expected to be developed into new therapeutic drugs in the field of cardiac disease.


Assuntos
Cardiotônicos/farmacologia , Diosgenina/análogos & derivados , Diosgenina/farmacologia , Cardiopatias/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Cardiotônicos/efeitos adversos , Cardiotônicos/química , Cardiotônicos/uso terapêutico , Diosgenina/efeitos adversos , Diosgenina/química , Diosgenina/uso terapêutico , Coração/efeitos dos fármacos , Humanos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA