Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451119

RESUMO

Subcritical water treatment has received considerable attention due to its cost effectiveness and environmentally friendly properties. In this investigation, Chinese quince fruits were submitted to subcritical water treatment (130, 150, and 170 °C), and the influence of treatments on the structure of milled wood lignin (MWL) was evaluated. Structural properties of these lignin samples (UL, L130, L150, and L170) were investigated by high-performance anion exchange chromatography (HPAEC), FT-IR, gel permeation chromatography (GPC), TGA, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-Heteronculear Single Quantum Coherence (HSQC) -NMR, and 31P-NMR. The carbohydrate analysis showed that xylose in the samples increased significantly with higher temperature, and according to molecular weight and thermal analysis, the MWLs of the pretreated residues have higher thermal stability with increased molecular weight. The spectra of 2D-NMR and 31P-NMR demonstrated that the chemical linkages in the MWLs were mainly ß-O-4' ether bonds, ß-5' and ß-ß', and the units were principally G- S- H- type with small amounts of ferulic acids; these results are consistent with the results of Py-GC/MS analysis. It is believed that understanding the structural changes in MWL caused by subcritical water treatment will contribute to understanding the mechanism of subcritical water extraction, which in turn will provide a theoretical basis for developing the technology of subcritical water extraction.


Assuntos
Frutas/química , Lignina/química , Rosaceae/química , Purificação da Água , Madeira/química , China , Estrutura Molecular , Tamanho da Partícula
2.
Molecules ; 22(4)2017 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-28346341

RESUMO

Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO2 (SC-CO2) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O2/kg) than extractions using CS and SC-CO2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.


Assuntos
Óleos de Plantas/química , Rosaceae/química , Sementes/química , Pressão Atmosférica , Ácidos Graxos Insaturados/análise , Temperatura , alfa-Tocoferol/análise
3.
Molecules ; 22(2)2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157172

RESUMO

In this study, the subcritical butane extraction process of fenugreek seed oil was optimized using response surface methodology with a Box-Behnken design. The optimum conditions for extracted oil from fenugreek seed was as follows: extraction temperature of 43.24 °C , extraction time of 32.80 min, and particle size of 0.26 mm. No significant differences were found between the experimental and predicted values. The physical and chemical properties of the oil showed that the oil could be used as edible oil. Fatty acid composition of oils obtained by subcritical butane under the optimum conditions and by accelerated solvent extraction showed negligible difference. The oils were rich in linoleic acid (42.71%-42.80%), linolenic acid (26.03%-26.15%), and oleic acid (14.24%-14.40%). The results revealed that the proposed method was feasible, and this essay shows the way to exploit fenugreek seeds by subcritical butane extraction under the scope of edible oils.


Assuntos
Butanos/química , Extração Líquido-Líquido , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Trigonella/química , Varredura Diferencial de Calorimetria , Ácidos Graxos/química , Extração Líquido-Líquido/métodos , Compostos Fitoquímicos/química , Termogravimetria
4.
J Sci Food Agric ; 97(6): 1894-1903, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27528006

RESUMO

BACKGROUND: Red pepper seeds account for 450-500 g kg-1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. RESULTS: The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g-1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g-1 , an unsaponifiable matter content of 12.400 g kg-1 , a peroxide value of 2.465 meq. O2 kg-1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. CONCLUSION: The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry.


Assuntos
Capsicum/química , Fracionamento Químico/métodos , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sementes/química , Butanos/química , Fracionamento Químico/instrumentação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA