Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Nat Protoc ; 11(10): 1977-1988, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27658013

RESUMO

Enzymes that catalyze efficient macrocyclization or site-specific ligation of peptides and proteins can enable tools for drug design and protein engineering. Here we describe a protocol to use butelase 1, a recently discovered peptide ligase, for high-efficiency cyclization and ligation of peptides and proteins ranging in size from 10 to >200 residues. Butelase 1 is the fastest known ligase and is found in pods of the common medicinal plant Clitoria ternatea (also known as butterfly pea). It has a very simple C-terminal-specific recognition motif that requires Asn/Asp (Asx) at the P1 position and a dipeptide His-Val at the P1' and P2' positions. Substrates for butelase-mediated ligation can be prepared by standard Fmoc (9-fluorenylmethyloxycarbonyl) chemistry or recombinant expression with the minimal addition of this tripeptide Asn-His-Val motif at the C terminus. Butelase 1 achieves cyclizations that are 20,000 times faster than those of sortase A, a commonly used enzyme for backbone cyclization. Unlike sortase A, butelase is traceless, and it can be used for the total synthesis of naturally occurring peptides and proteins. Furthermore, butelase 1 is also useful for intermolecular ligations and synthesis of peptide or protein thioesters, which are versatile activated intermediates necessary for and compatible with many chemical ligation methods. The protocol describes steps for isolation and purification of butelase 1 from plant extract using a four-step chromatography procedure, which takes ∼3 d. We then describe steps for intramolecular cyclization, intermolecular ligation and butelase-mediated synthesis of protein thioesters. Butelase reactions are generally completed within minutes and often achieve excellent yields.

3.
Nat Chem Biol ; 10(9): 732-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038786

RESUMO

Proteases are ubiquitous in nature, whereas naturally occurring peptide ligases, enzymes catalyzing the reverse reactions of proteases, are rare occurrences. Here we describe the discovery of butelase 1, to our knowledge the first asparagine/aspartate (Asx) peptide ligase to be reported. This highly efficient enzyme was isolated from Clitoria ternatea, a cyclic peptide-producing medicinal plant. Butelase 1 shares 71% sequence identity and the same catalytic triad with legumain proteases but does not hydrolyze the protease substrate of legumain. Instead, butelase 1 cyclizes various peptides of plant and animal origin with yields greater than 95%. With Kcat values of up to 17 s(-1) and catalytic efficiencies as high as 542,000 M(-1) s(-1), butelase 1 is the fastest peptide ligase known. Notably, butelase 1 also displays broad specificity for the N-terminal amino acids of the peptide substrate, thus providing a new tool for C terminus-specific intermolecular peptide ligations.


Assuntos
Asparagina/metabolismo , Ácido Aspártico/metabolismo , Clitoria/enzimologia , Ligases/metabolismo , Compostos Macrocíclicos/síntese química , Peptídeo Sintases/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/metabolismo , Ciclização , Dissulfetos/metabolismo , Humanos , Hidrólise , Cinética , Compostos Macrocíclicos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/isolamento & purificação , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA