RESUMO
The effect of alfalfa saponins (AS) supplementation on the meat quality especially the color for growing lamb was investigated. Fifty Hu male lambs with body weights (BW, 19.21 ± 0.45 kg) were divided into five groups and supplemented AS with 0, 500, 1,000, 2,000, and 4,000 mg/kg of dietary dry matter intake. After 90 days, all lambs were slaughtered. The longissimus thoracis muscle in lamb displayed significant changes in the content of intramuscular fat, especially n-3 polyunsaturated fatty acids, and drip loss within AS treatment (p < .05) between control and treatments groups. Redness (a*) significantly improved in both 0-day and 7-day storage with the AS supplementation coupled with the percentage of met-myoglobin reduction (p < .05). The redness (a*) change may result from improved met-myoglobin reducing activity, antioxidant enzymes, lactate dehydrogenase, and succinate dehydrogenase (p < .05) by AS supplementation in muscle. These enzymes may help to protect mitochondria function and reduce met-myoglobin, which bring a bright and red meat color.
Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Cor , Dieta/veterinária , Suplementos Nutricionais , Qualidade dos Alimentos , Carne , Medicago sativa/química , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Saponinas/administração & dosagem , Ovinos/crescimento & desenvolvimento , Ovinos/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos Graxos Ômega-3/metabolismo , Armazenamento de Alimentos/métodos , Masculino , Carne/análise , Saponinas/isolamento & purificação , Fatores de TempoRESUMO
This study was designed to investigate the impact of dietary lycopene (antioxidant extracted from tomato) supplementation on postmortem antioxidant capacity, drip loss and protein expression profiles of lamb meat during storage. Thirty male Hu lambs were randomly divided into three treatment groups and housed in individual pens and received 0, 200 or 400 mg·kg-1 lycopene in their diet, respectively. All lambs were slaughtered after 3 months of fattening, and the longissimus thoracis (LT) muscle was collected for analyses. The results indicated that drip loss of LT muscle increased with storage days (P < 0.05). After storage for 7 days, significantly lower drip loss of meat was found in fed the lycopene-supplemented diet (P < 0.05). Dietary lycopene supplementation increased the activity of antioxidant enzymes (total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT)) (P < 0.05) and decreased the thiobarbituric acid reactive substance (TBARS) and carbonyl contents (P < 0.05). During the storage period (days 0, 5 and 7), a number of differentially abundant proteins (DAPs), including oxidases, metabolic enzymes, calcium channels and structural proteins, were identified based on iTRAQ data, with roles predominantly in carbon metabolism, oxidative phosphorylation, cardiac muscle contraction and proteasome pathways, and which contribute to decreased drip loss of lamb meat during storage. It can be concluded that dietary lycopene supplementation increased antioxidant capacity after slaughter, and the decreased drip loss during postmortem storage might occur by changing the expression of proteins related to enzyme activity and cellular structure in lamb muscle.
RESUMO
It is generally accepted that the phenotype and gene expression pattern of the offspring can be altered by maternal folic acid (FA) supplementation during the gestation period. The aims of this study were to investigate the effects of maternal FA supplementation on the growth performance, muscle development and immunity of newborn lambs of different litter size. According to litter size (twins, TW; triplets, TR) and maternal dietary FA supplementation levels (control, C; 16 or 32 mg·kg-1 FA supplementation, F16 and F32), neonatal lambs were randomly divided into six groups (TW-C, TW-F16, TW-F32, TR-C, TR-F16 and TR-F32). After farrowing, the birth weight in TW was higher than that in the TR group, and increased with FA supplementation of their mothers (P<.05). Folate, IGF-I, IgM and IgA concentrations of newborn lambs showed a litter size and FA supplementation interaction (P<.05). FA supplementation also increased diameter, area, perimeter and DNA content of the longissimus dorsi muscle of the lambs (P<.05) regardless of the litter size. Transcriptome analysis of the longissimus dorsi muscle revealed differentially expressed genes with dietary FA supplementation enriched in immunity- and cell development-related genes. Furthermore, FA supplementation upregulated the expression of myogenesis-related genes, while downregulated those involved in the inhibition of muscle development. In addition, immunity-related genes in the neonatal lambs showed lower expression levels in response to maternal dietary FA supplementation. Overall, maternal FA supplementation during gestation could increase the offspring's birth weight and modulate its muscle development and immunity.
Assuntos
Peso ao Nascer , Suplementos Nutricionais , Ácido Fólico/administração & dosagem , Tamanho da Ninhada de Vivíparos , Animais , Animais Recém-Nascidos , Peso Corporal , Dieta/veterinária , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sistema Imunitário , Exposição Materna , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Gravidez , Prenhez , OvinosRESUMO
BACKGROUND: Litter size affects fetal development but its relation to diet-induced fatty liver later in life is unknown. OBJECTIVES: This aim of this study was to test the hypothesis that litter size influences postweaning fatty liver development in response to soybean oil-supplemented diet. METHODS: Weanling twin (TW) or triplet (TP) male lambs (n = 16) were fed a control diet or 2% soybean oil-supplemented diet (SO) for 90 d. Liver tissue morphology, biochemical parameters, and lipid metabolic enzymes were determined. Hepatic gene expression was analyzed by RNA sequencing (n = 3), followed by enrichment analysis according to Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes involved in lipid metabolism were further verified by quantitative reverse transcriptase-polymerase chain reaction (n = 4). All data were analyzed by a 2-factor ANOVA, apart from differentially expressed genes, which were identified by the Benjamini-Hochberg approach (q value ≤0.05). RESULTS: SO increased liver triglyceride (by 55%) and nonesterified fatty acid (by 54%) concentrations in TPs (P ≤ 0.05) but not in TWs (P > 0.05). SO also induced a 2.3- and 2.1-fold increase in the liver steatosis score of TPs and TWs, respectively (P ≤ 0.05). Moreover, SO reduced the activity of lipolytic enzymes including hepatic lipase and total lipase in TPs by 47% and 25%, respectively (P ≤ 0.05). In contrast, activities of lipogenic enzymes, including malic enzyme and acetyl coenzyme A carboxylase, were significantly higher in TPs (P ≤ 0.05). Moreover, TPs had higher expression of lipogenic genes, such as FASN (by 45%) and APOB (by 72%), and lower expression of lipolytic genes, such as PRKAA2 (by 28%) and CPT1A (by 43%), compared with TWs (P ≤ 0.05). CONCLUSIONS: TPs have a gene expression profile that is more susceptible to SO-induced fatty liver than that of TWs, which indicates that insufficient maternal nutrient supply at fetal and neonatal stages may increase the risk of nonalcoholic fatty liver disease.
Assuntos
Suplementos Nutricionais/efeitos adversos , Tamanho da Ninhada de Vivíparos/fisiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Óleo de Soja/administração & dosagem , Óleo de Soja/efeitos adversos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Modelos Animais de Doenças , Feminino , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Troca Materno-Fetal/fisiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal/fisiologia , Carneiro DomésticoRESUMO
Dietary vitamin E supplementation is beneficial to semen quality in different sheep and goat breeds. The aim of this research was to further investigate the effect of vitamin E in sheep on spermatogenesis and its regulatory mechanisms using RNA-seq. Thirty male Hu lambs were randomly divided into three groups. The animals received 0, 200 or 2000 IU/day vitamin E dietary supplementation for 105 days, and its effects were subsequently evaluated. The results indicate vitamin E supplementation increased the number of germ cells in the testes and epididymides. The positive effects were reduced, however, in animals that received 2000 IU/d vitamin E. Using the RNA-seq procedure, there was detection of a number of differentially expressed genes such as NDRG1, FSCN3 and CYP26B1 with these genes being mainly related to the regulation of spermatogenesis. Supplementation with 2000 IU/d vitamin E supplementation resulted in a lesser abundance of skeleton-related transcripts such as TUBB, VIM and different subtypes of collagen, and there was also an effect on the ECM-receptor interaction pathway. These changes appear to be responsible for the lesser beneficial effect of the greater vitamin E concentrations. The results provide a novel insight into the regulation of spermatogenesis by vitamin E at the molecular level, however, for a precise understanding of functions of the affected genes there needs to be further study.
Assuntos
Dieta/veterinária , Análise do Sêmen/veterinária , Ovinos , Espermatogênese/fisiologia , Testículo/efeitos dos fármacos , Vitamina E/farmacologia , Ração Animal/análise , Animais , Antioxidantes , Suplementos Nutricionais , Masculino , Distribuição Aleatória , Espermatogênese/efeitos dos fármacos , Testículo/metabolismoRESUMO
BACKGROUND: The aim of this study was to evaluate the effect of dietary lycopene powder on meat quality and the oxidative stability of lipid and protein of longissimus thoracis (LT) in lamb. A total of 30 male lambs were randomly sampled from three feeding groups (control without lycopene supplement, 200 and 400 mg kg-1 lycopene powder respectively) after 3 months of feeding. The muscle samples were taken after slaughter and stored at 4 °C for 7 days. RESULTS: Compared with the control, the results showed that supplementation with lycopene powder gave a higher a* value (redness), and increased the levels of vitamin A and vitamin E. Increasing dietary lycopene powder resulted in a lower degree of lipid and protein oxidation, as evidenced by lower contents of thiobarbituric acid-reactive substance and carbonyl compounds, and higher levels of sulfhydryl groups. CONCLUSION: Dietary lycopene powder is an effective antioxidant that blocks the oxidation of meat proteins and lipids, and has a positive effect on increasing lamb meat quality during storage. © 2018 Society of Chemical Industry.
Assuntos
Licopeno , Carne Vermelha/análise , Carneiro Doméstico , Ração Animal/análise , Animais , Antioxidantes , Dieta/veterinária , Armazenamento de Alimentos , Masculino , Músculo Esquelético/química , Oxirredução , Proteínas/metabolismoRESUMO
Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.