Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Transl Med ; 15(687): eabn2110, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921036

RESUMO

Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.


Assuntos
Antineoplásicos , Pancreatite , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Asparaginase/efeitos adversos , Retinoides/efeitos adversos , Vitamina A/uso terapêutico , Pancreatite/induzido quimicamente , Pancreatite/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Análise de Sistemas , Antineoplásicos/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35158041

RESUMO

Vitamin A deficiency (VAD) results in intestinal inflammation, increased redox stress and reactive oxygen species (ROS) levels, imbalanced inflammatory and immunomodulatory cytokines, compromised barrier function, and perturbations of the gut microbiome. To combat VAD dietary interventions with ß-carotene, the most abundant precursor of vitamin A, are recommended. However, the impact of ß-carotene on intestinal health during VAD has not been fully clarified, especially regarding the VAD-associated intestinal dysbiosis. Here we addressed this question by using Lrat-/-Rbp-/- (vitamin A deficient) mice deprived of dietary preformed vitamin A and supplemented with ß-carotene as the sole source of the vitamin, alongside with WT (vitamin A sufficient) mice. We found that dietary ß-carotene impacted intestinal vitamin A status, barrier integrity and inflammation in both WT and Lrat-/-Rbp-/- (vitamin A deficient) mice on the vitamin A-free diet. However, it did so to a greater extent under overt VAD. Dietary ß-carotene also modified the taxonomic profile of the fecal microbiome, but only under VAD. Given the similarity of the VAD-associated intestinal phenotypes with those of several other disorders of the gut, collectively known as Inflammatory Bowel Disease (IBD) Syndrome, these findings are broadly relevant to the effort of developing diet-based intervention strategies to ameliorate intestinal pathological conditions.


Assuntos
Enteropatias , Deficiência de Vitamina A , Animais , Modelos Animais de Doenças , Disbiose/complicações , Disbiose/tratamento farmacológico , Inflamação/complicações , Inflamação/tratamento farmacológico , Camundongos , Vitamina A/uso terapêutico , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/tratamento farmacológico , Deficiência de Vitamina A/patologia , beta Caroteno/farmacologia , beta Caroteno/uso terapêutico
3.
Nutrients ; 13(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063790

RESUMO

Background: While the current national prevalence rate of vitamin A deficiency (VAD) is estimated to be less than 1%, it is suggested that it varies between different ethnic groups and races within the U.S. We assessed the prevalence of VAD in pregnant women of different ethnic groups and tested these prevalence rates for associations with the vitamin A-related single nucleotide polymorphism (SNP) allele frequencies in each ethnic group. Methods: We analyzed two independent datasets of serum retinol levels with self-reported ethnicities and the differences of allele frequencies of the SNPs associated with vitamin A metabolism between groups in publicly available datasets. Results: Non-Hispanic Black and Hispanic pregnant women showed high VAD prevalence in both datasets. Interestingly, the VAD prevalence for Hispanic pregnant women significantly differed between datasets (p = 1.973 × 10-10, 95%CI 0.04-0.22). Alleles known to confer the risk of low serum retinol (rs10882272 C and rs738409 G) showed higher frequencies in the race/ethnicity groups with more VAD. Moreover, minor allele frequencies of a set of 39 previously reported SNPs associated with vitamin A metabolism were significantly different between the populations of different ancestries than those of randomly selected SNPs (p = 0.030). Conclusions: Our analysis confirmed that VAD prevalence varies between different ethnic groups/races and may be causally associated with genetic variants conferring risk for low retinol levels. Assessing genetic variant information prior to performing an effective nutrient supplementation program will help us plan more effective food-based interventions.


Assuntos
Etnicidade/genética , Polimorfismo de Nucleotídeo Único , Complicações na Gravidez/etnologia , Deficiência de Vitamina A/etnologia , Vitamina A/genética , Adulto , Negro ou Afro-Americano/genética , Alelos , Feminino , Frequência do Gene , Hispânico ou Latino/genética , Humanos , Inquéritos Nutricionais , Estado Nutricional , Gravidez , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Prevalência , Grupos Raciais/genética , Fatores de Risco , Estados Unidos/epidemiologia , Vitamina A/sangue , Deficiência de Vitamina A/epidemiologia , Deficiência de Vitamina A/genética , Adulto Jovem
4.
Subcell Biochem ; 95: 27-55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32297295

RESUMO

The placenta, a hallmark of mammalian embryogenesis, allows nutrients to be exchanged between the mother and the fetus. Vitamin A (VA), an essential nutrient, cannot be synthesized by the embryo, and must be acquired from the maternal circulation through the placenta. Our understanding of how this transfer is accomplished is still in its infancy. In this chapter, we recapitulate the early studies about the relationship between maternal dietary/supplemental VA intake and fetal VA levels. We then describe how the discovery of retinol-binding protein (RBP or RBP4), the development of labeling and detection techniques, and the advent of knockout mice shifted this field from a macroscopic to a molecular level. The most recent data indicate that VA and its derivatives (retinoids) and the pro-VA carotenoid, ß-carotene, are transferred across the placenta by distinct proteins, some of which overlap with proteins involved in lipoprotein uptake. The VA status and dietary intake of the mother influence the expression of these proteins, creating feedback signals that control the uptake of retinoids and that may also regulate the uptake of lipids, raising the intriguing possibility of crosstalk between micronutrient and macronutrient metabolism. Many questions remain about the temporal and spatial patterns by which these proteins are expressed and transferred throughout gestation. The answers to these questions are highly relevant to human health, considering that those with either limited or excessive intake of retinoids/carotenoids during pregnancy may be at risk of obtaining improper amounts of VA that ultimately impact the development and health of their offspring.


Assuntos
Desenvolvimento Embrionário , Vitamina A/metabolismo , Animais , Feminino , Humanos , Gravidez , Complicações na Gravidez/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Deficiência de Vitamina A/metabolismo , beta Caroteno/metabolismo
5.
Sci Rep ; 8(1): 8834, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892071

RESUMO

Vitamin A deficiency is still a public health concern affecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating ß-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme ß-carotene 15,15'-oxygenase (BCO1). Another cleavage enzyme, ß-carotene 9',10'-oxygenase (BCO2), asymmetrically cleaves ß-carotene in adult tissues to prevent its mitochondrial toxicity, generating ß-apo-10'-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A deficiency-susceptible genetic background (Rbp4-/-) generated severely malformed vitamin A-deficient embryos. Maternal ß-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2-/-Rbp4-/- mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents ß-carotene toxicity during embryogenesis under severe vitamin A deficiency. In contrast, ß-apo-10'-carotenal dose-dependently restored normal embryonic development in Bco2-/-Rbp4-/- but not Bco1-/-Bco2-/-Rbp4-/- mice, suggesting that ß-apo-10'-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation. These findings provide a proof of principle for the important role of BCO2 in embryonic development and invite consideration of ß-apo-10'-carotenal as a nutritional supplement to sustain normal embryonic development in vitamin A-deprived pregnant women.


Assuntos
Carotenoides/metabolismo , Desenvolvimento Embrionário , Retinoides/metabolismo , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/fisiopatologia , Animais , Dioxigenases/deficiência , Dioxigenases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Plasmáticas de Ligação ao Retinol/deficiência , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/deficiência , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
6.
Arch Biochem Biophys ; 647: 33-40, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654731

RESUMO

It is now widely accepted that nutrition during critical periods in early development, both pre- and postnatal, may have lifetime consequences in determining health or onset of major diseases in the adult life. Dietary carotenoids have shown beneficial health effects throughout the life cycle due to their potential antioxidant properties, their ability to serves as precursors of vitamin A and to the emerging signaling functions of their metabolites. The non-provitamin A carotenoids lutein and zeaxanthin are emerging as important modulators of infant and child visual and cognitive development, as well as critical effectors in the prevention and treatment of morbidity associated with premature births. This review provides a general overview of lutein and zeaxanthin metabolism in mammalian tissues and highlights the major advancements and remaining gaps in knowledge in regards to their metabolism and health effects during pre- and early post-natal development. Furthering our knowledge in this area of research will impact dietary recommendation and supplementation strategies aimed at sustaining proper fetal and infant growth.


Assuntos
Luteína/metabolismo , Zeaxantinas/metabolismo , Animais , Aleitamento Materno , Dieta , Suplementos Nutricionais/análise , Feminino , Feto/metabolismo , Humanos , Lactente , Absorção Intestinal , Lactação , Luteína/análise , Troca Materno-Fetal , Leite/química , Leite/metabolismo , Estado Nutricional , Gravidez , Zeaxantinas/análise
7.
FASEB J ; 30(3): 1339-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26671999

RESUMO

We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.


Assuntos
Resistência à Insulina/fisiologia , Obesidade/metabolismo , Proteína Quinase C-delta/metabolismo , Vitamina A/metabolismo , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Homeostase/fisiologia , Humanos , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Regiões Promotoras Genéticas/fisiologia , Complexo Piruvato Desidrogenase/metabolismo , Retinoides/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Transdução de Sinais/fisiologia
8.
J Nutr ; 145(7): 1408-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25995275

RESUMO

BACKGROUND: The vitamin A precursor ß-carotene (BC) promotes mammalian embryonic development by serving as a source of retinoids (vitamin A derivatives) to the developing tissues. In the Western world, increased consumption of dietary supplements, including vitamin A and BC, is common; however, the consequences of maternal high preformed vitamin A intake on embryonic uptake and metabolism of BC are poorly understood. OBJECTIVE: This study investigated vitamin A and BC metabolism in developing mouse tissues after a single BC administration to pregnant wild-type (WT) mice fed purified diets with different vitamin A concentrations. METHODS: WT dams fed a sufficient vitamin A (VA-S; 4.2 µg of retinol/g of diet), high vitamin A (VA-H; 33 µg of retinol/g of diet), or excess vitamin A (VA-E; 66 µg of retinol/g of diet) diet throughout gestation were intraperitoneally injected with BC or vehicle at 13.5 d postcoitum (dpc). At 14.5 dpc, retinoid and BC concentrations in maternal serum and liver, placenta, and embryo were quantified by HPLC; expressions of genes controlling retinoid and BC homeostasis were analyzed by quantitative polymerase chain reaction. Maternal lipoprotein BC concentrations were analyzed by density gradient ultracentrifugation followed by HPLC. RESULTS: Intact BC was undetectable only in embryos from VA-E + BC dams. Relative to the VA-S + vehicle group, placentas from VA-S + BC dams showed 39% downregulation of LDL-receptor-related protein 1 (Lrp1 ); 35% downregulation of VLDL receptor (Vldlr); 56% reduced mRNA expression of ß-carotene 15,15'-oxygenase (Bco1); and 80% upregulation of ß-carotene 9',10'-oxygenase (Bco2). Placental cytochrome P450, family 26, subfamily A, polypeptide 1 (Cyp26A1) was upregulated 2-fold in the VA-E group compared with the VA-S group, regardless of maternal treatment. CONCLUSIONS: In mice, transfer of intact BC to the embryo is attenuated by high tissue vitamin A concentrations. Maternal vitamin A intake and BC availability activate a placental transcriptional response to protect the embryo from retinoid and carotenoid excess.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Vitamina A/administração & dosagem , beta Caroteno/sangue , Animais , Suplementos Nutricionais , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica , Fígado/química , Fenômenos Fisiológicos da Nutrição Materna , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Placenta/química , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitamina A/farmacocinética , beta Caroteno/administração & dosagem , beta Caroteno/farmacocinética
9.
Nutrients ; 6(3): 1262-72, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24667133

RESUMO

Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA) is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol) and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4). However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.


Assuntos
Ácidos Linoleicos Conjugados/farmacocinética , Vitamina A/farmacocinética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Suplementos Nutricionais , Interações Medicamentosas , Humanos , Ácidos Linoleicos Conjugados/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Vitamina A/administração & dosagem
10.
J Nutr ; 144(5): 608-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598882

RESUMO

Vitamin A deficiency (VAD) is an overwhelming public health problem that affects hundreds of millions of people worldwide. A definitive solution to VAD has yet to be identified. Because it is an essential nutrient, vitamin A or its carotenoid precursor ß-carotene can only be obtained from food or supplements. In this study, we wanted to establish whether ß-carotene produced in the mouse intestine by bacteria synthesizing the provitamin A carotenoid could be delivered to various tissues within the body. To achieve this, we took advantage of the Escherichia coli MG1655*, an intestine-adapted spontaneous mutant of E. coli MG1655, and the plasmid pAC-BETA, containing the genes coding for the 4 key enzymes of the ß-carotene biosynthetic pathway (geranylgeranyl pyrophosphate synthase, phytoene synthase, phytoene desaturase, and lycopene cyclase) from Erwinia herbicola. We engineered the E. coli MG1655* to produce ß-carotene during transformation with pAC-BETA (MG1655*-ßC) and gavaged wild-type and knockout mice for the enzyme ß-carotene 15,15'-oxygenase with this recombinant strain. Various regimens of bacteria administration were tested (single vs. multiple and low vs. high doses). ß-Carotene concentration was measured by HPLC in mouse serum, liver, intestine, and feces. Enumeration of MG1655*-ßC cells in the feces was performed to assess efficiency of intestinal colonization. We demonstrated in vivo that probiotic bacteria could be used to deliver vitamin A to the tissues of a mammalian host. These results have the potential to pave the road for future investigations aimed at identifying alternative, novel approaches to treat VAD.


Assuntos
Erwinia/enzimologia , Escherichia coli/enzimologia , Intestinos/microbiologia , Deficiência de Vitamina A/terapia , Vitamina A/biossíntese , beta Caroteno/metabolismo , Animais , Carotenoides/metabolismo , Erwinia/genética , Escherichia coli/genética , Fezes/microbiologia , Feminino , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Mucosa Intestinal/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/genética , Oxirredutases/metabolismo , Probióticos , Deficiência de Vitamina A/metabolismo , Deficiência de Vitamina A/microbiologia , beta-Caroteno 15,15'-Mono-Oxigenase/genética , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo
11.
J Nutr ; 142(8): 1456-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22739378

RESUMO

The human diet contains ß-carotene as the most abundant precursor of vitamin A, an essential nutrient for embryogenesis. Our laboratory previously showed the importance of ß-carotene metabolism via ß-carotene-15,15'-oxygenase (CMOI) to support mouse embryonic development. However, the mechanisms regulating embryonic acquisition and utilization of ß-carotene from the maternal circulation via placenta remain unknown. We used wild-type (WT) and Lrat(-/-)Rbp(-/-) (L(-/-)R(-/-)) mice, the latter being a model of marginal vitamin A deficiency. Pregnant dams, fed a nonpurified diet sufficient in vitamin A throughout life, were i.p. supplemented with ß-carotene or vehicle at 13.5 d postcoitum (dpc). Effects of this acute maternal supplementation on retinoid and ß-carotene metabolism in maternal (serum, liver) and developing tissues (placenta, yolk sac, embryo) were investigated at 14.5 dpc. We showed that, upon supplementation, placental ß-carotene concentrations were greater in L(-/-)R(-/-) than in WT mice. However, the retinoid (retinol and retinyl ester) concentrations remained unchanged in placenta (and in all other tissues analyzed) of both genotypes upon ß-carotene administration. We also showed that upon a single i.p. ß-carotene supplementation, placental LDL receptor-related protein (Lrp1) mRNA expression was lower in WT mice, and embryonic CmoI mRNA expression was greater in L(-/-)R(-/-) mice. Together, these data suggest a potential role of LRP1 in mediating the uptake of ß-carotene across the placenta and that even a marginally impaired maternal vitamin A status may influence uptake and utilization of ß-carotene by the placenta and the embryo.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Placenta/metabolismo , Deficiência de Vitamina A/metabolismo , beta Caroteno/administração & dosagem , beta Caroteno/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Knockout , Gravidez , Distribuição Aleatória
12.
J Biol Chem ; 286(37): 32198-207, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21795711

RESUMO

Dietary retinoids (vitamin A and its derivatives) contribute to normal embryonic development. However, the mechanism(s) involved in the transfer of recently ingested vitamin A from mother to embryo is not fully understood. We investigated in vivo whether lipoprotein lipase (LPL) facilitates the placental uptake of dietary retinyl ester incorporated in chylomicrons and their remnants and its transfer to the embryo. We examined the effects of both genetic ablation (MCK-L0 mice) and pharmacological inhibition (P-407) of LPL by maintaining wild type and MCK-L0 mice on diets with different vitamin A content or administering them an oral gavage dose of [(3)H]retinol with or without P-407 treatment. We showed that LPL expressed in placenta facilitates uptake of retinoids by this organ and their transfer to the embryo, mainly through its catalytic activity. In addition, through its "bridging function," LPL can mediate the acquisition of nascent chylomicrons by the placenta, although less efficiently. Quantitative real-time PCR and Western blot analysis showed that placental LPL acts in concert with LDL receptor and LRP1. Finally, by knocking out the retinol-binding protein (RBP) gene in the MCK-L0 background (MCK-L0-RBP(-/-) mice) we demonstrated that the placenta acquires dietary retinoids also via the maternal circulating RBP-retinol complex. RBP expressed in the placenta facilitate the transfer of postprandial retinoids across the placental layers toward the embryo.


Assuntos
Suplementos Nutricionais , Lipase Lipoproteica/biossíntese , Troca Materno-Fetal/fisiologia , Placenta/enzimologia , Proteínas da Gravidez/biossíntese , Gravidez/fisiologia , Vitamina A/farmacocinética , Vitaminas/farmacocinética , Animais , Quilomícrons/genética , Quilomícrons/metabolismo , Embrião de Mamíferos/enzimologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Lipase Lipoproteica/genética , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Vitamina A/farmacologia , Vitaminas/farmacologia
13.
J Lipid Res ; 50(11): 2278-89, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19454764

RESUMO

Conjugated linoleic acid (CLA) is a polyunsaturated fatty acid obtained from ruminant products. Previous studies in rats and pigs showed that a dietary equimolar mixture of c9,t11 and t10,c12 CLA isomers induces changes in serum and tissue levels of retinoids (vitamin A derivatives). However, the mechanism(s) responsible for these actions remain(s) unexplored. Given the numerous crucial biological functions regulated by retinoids, it is key to establish whether the perturbations in retinoid metabolism induced by dietary CLA mediate some of the beneficial effects associated with intake of this fatty acid or, rather, have adverse consequences on health. To address this important biological question, we began to explore the mechanisms through which dietary CLA alters retinoid metabolism. By using enriched preparations of CLA c9,t11 or CLA t10,c12, we uncoupled the effects of these two CLA isomers on retinoid metabolism. Specifically, we show that both isomers induce hepatic retinyl ester accumulation. However, only CLA t10,c12 enhances hepatic retinol secretion, resulting in increased serum levels of retinol and its specific carrier, retinol-binding protein (RBP). Dietary CLA t10,c12 also redistributes retinoids from the hepatic stores toward the adipose tissue and possibly stimulates hepatic retinoid oxidation. Using mice lacking RBP, we also demonstrate that this key protein in retinoid metabolism mediates hepatic retinol secretion and its redistribution toward fat tissue induced by CLA t10,c12 supplementation.


Assuntos
Ácidos Linoleicos Conjugados/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Vitamina A/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Gorduras na Dieta/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/química , Feminino , Homeostase/efeitos dos fármacos , Ácidos Linoleicos Conjugados/sangue , Ácidos Linoleicos Conjugados/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Pré-Albumina/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Vitamina A/sangue
14.
J Biol Rhythms ; 19(6): 504-17, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15523112

RESUMO

Mice exhibit multiple nonvisual responses to light, including 1) photoentrainment of circadian rhythm; 2) "masking," which refers to the acute effect of light on behavior, either negative (activity suppressing) or positive (activity inducing); and 3) pupillary constriction. In mammals, the eye is the sole photosensory organ for these responses, and it contains only 2 known classes of pigments: opsins and cryptochromes. No individual opsin or cryptochrome gene is essential for circadian photoreception, gene photoinduction, or masking. Previously, the authors found that mice lacking retinol-binding protein, in which dietary depletion of ocular retinaldehyde can be achieved, had normal light signaling to the SCN, as determined by per gene photoinduction. In the present study, the authors analyzed phototransduction to the SCN in vitamin A-replete and vitamin A-depleted rbp-/- and rbp-/-cry1-/-cry2-/- mice using molecular and behavioral end points. They found that vitamin A-depleted rbp-/- mice exhibit either normal photoentrainment or become diurnal. In contrast, while vitamin A-replete rbp-/-cry1-/-cry2-/- mice are light responsive (with reduced sensitivity), vitamin A-depleted rbp-/-cry1-/-cry2-/- mice, which presumably lack functional opsins and cryptochromes, lose most behavioral and molecular responses to light. These data demonstrate that both cryptochromes and opsins regulate nonvisual photoresponses.


Assuntos
Flavoproteínas/metabolismo , Transdução de Sinal Luminoso/fisiologia , Vitamina A/metabolismo , Animais , Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Criptocromos , Dieta , Suplementos Nutricionais , Flavoproteínas/genética , Regulação da Expressão Gênica , Genes fos , Luz , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Pupila , Retinaldeído/genética , Retinaldeído/metabolismo , Opsinas de Bastonetes/metabolismo , Núcleo Supraquiasmático/metabolismo , Vitamina A/administração & dosagem
15.
J Lipid Res ; 45(11): 1975-82, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15314099

RESUMO

Although the major tissue site of retinol binding protein (RBP) synthesis in the body is the liver, other sites of synthesis have been reported. The physiological role(s) of circulating RBP that is produced and secreted extrahepatically has not been systematically investigated. To address this question, we used as a model a mouse strain (hRBP(-/-)) that expresses human RBP (hRBP) cDNA under the control of the mouse muscle creatine kinase promoter in an rbp-null background (RBP(-/-)). By comparing hRBP(-/-), RBP(-/-), and wild-type mice, we asked whether extrahepatic RBP can perform all of the physiological functions of RBP synthesized in the liver. We demonstrate that extrahepatically synthesized hRBP, unlike RBP expressed in liver, cannot mobilize liver retinoid stores. Consistent with this conclusion, we find that circulating hRBP is not taken up by hepatocytes. RBP has been proposed to play an essential role in distributing hepatic retinoids between hepatocytes and hepatic stellate cells. We find, however, that the distribution of retinoid in the livers of the three mouse strains described above is identical. Thus, RBP is not required for intrahepatic transport and storage of retinoid. These and other observations are discussed.


Assuntos
Fígado/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Tretinoína/metabolismo , Vitamina A/metabolismo , Administração Oral , Ração Animal , Animais , Transporte Biológico , Western Blotting , Cromatografia Líquida de Alta Pressão , Creatina Quinase/metabolismo , DNA Complementar/metabolismo , Hepatócitos/metabolismo , Fígado/citologia , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Fatores de Tempo , Vitamina A/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA