RESUMO
Closed-loop deep brain stimulation (DBS) shows great potential for precise neuromodulation of various neurological disorders, particularly Parkinson's disease (PD). However, substantial challenges remain in clinical translation due to the complex programming procedure of closed-loop DBS parameters. In this study, we proposed an online optimized amplitude adaptive strategy based on the particle swarm optimization (PSO) and proportional-integral-differential (PID) controller for modulation of the beta oscillation in a PD mean field model over long-term dynamic conditions. The strategy aimed to calculate the stimulation amplitude adapting to the fluctuations caused by circadian rhythm, medication rhythm, and stochasticity in the basal ganglia-thalamus-cortical circuit. The PID gains were optimized online using PSO, based on modulation accuracy, mean stimulation amplitude, and stimulation variation. The results showed that the proposed strategy optimized the stimulation amplitude and achieved beta power modulation under the influence of circadian rhythm, medication rhythm, and stochasticity of beta oscillations. This work offers a novel approach for precise neuromodulation with the potential for clinical translation.