Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540339

RESUMO

Popeye domain-containing (POPDC) proteins selectively bind cAMP and mediate cellular responses to sympathetic nervous system (SNS) stimulation. The first discovered human genetic variant (POPDC1S201F) is associated with atrioventricular (AV) block, which is exacerbated by increased SNS activity. Zebrafish carrying the homologous mutation (popdc1S191F) display a similar phenotype to humans. To investigate the impact of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling, homozygous popdc1S191F and popdc1 knock-out (popdc1KO) zebrafish larvae and adult isolated popdc1S191F hearts were studied by functional fluorescent analysis. It was found that in popdc1S191F and popdc1KO larvae, heart rate (HR), AV delay, action potential (AP) and calcium transient (CaT) upstroke speed, and AP duration were less than in wild-type larvae, whereas CaT duration was greater. SNS stress by ß-adrenergic receptor stimulation with isoproterenol increased HR, lengthened AV delay, slowed AP and CaT upstroke speed, and shortened AP and CaT duration, yet did not result in arrhythmias. In adult popdc1S191F zebrafish hearts, there was a higher incidence of AV block, slower AP upstroke speed, and longer AP duration compared to wild-type hearts, with no differences in CaT. SNS stress increased AV delay and led to further AV block in popdc1S191F hearts while decreasing AP and CaT duration. Overall, we have revealed that arrhythmogenic effects of POPDC1 dysfunction on cardiac electrophysiology and intracellular calcium handling in zebrafish are varied, but already present in early development, and that AV node dysfunction may underlie SNS-induced arrhythmogenesis associated with popdc1 mutation in adults.


Assuntos
Bloqueio Atrioventricular , Cálcio , Adulto , Animais , Humanos , Cálcio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Nó Atrioventricular/metabolismo , Técnicas Eletrofisiológicas Cardíacas/efeitos adversos , Bloqueio Atrioventricular/complicações , Arritmias Cardíacas/genética , Doença do Sistema de Condução Cardíaco
2.
Am J Physiol Heart Circ Physiol ; 323(6): H1137-H1166, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36269644

RESUMO

Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.


Assuntos
Doenças Cardiovasculares , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Técnicas Eletrofisiológicas Cardíacas , Arritmias Cardíacas/etiologia , Miócitos Cardíacos
3.
Europace ; 18(suppl 4): iv85-iv93, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28011835

RESUMO

AIMS: Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. METHODS AND RESULTS: Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. CONCLUSION: In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation.


Assuntos
Estimulação Cardíaca Artificial/métodos , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca , Coração/inervação , Preparação de Coração Isolado , Potenciais de Ação , Animais , Estimulação Cardíaca Artificial/efeitos adversos , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Recuperação de Função Fisiológica , Fatores de Tempo , Função Ventricular Esquerda , Pressão Ventricular , Imagens com Corantes Sensíveis à Voltagem
5.
Am J Physiol Heart Circ Physiol ; 297(6): H2220-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19855057

RESUMO

The goal of this work was to investigate the hemodynamic effects of simultaneous left ventricular (LV) pacing site (LVPS) and interventricular pacing delay (VVD) variation with biventricular pacing (BiVP) during acute LV failure. Simultaneously varying LVPS and VVD with BiVP has been shown to improve hemodynamics during acute right ventricular (RV) failure. However, effects during acute LV failure have not been reported. In six open-chest pigs, acute LV volume overload was induced by regurgitant flow via an aortic-LV conduit. Epicardial BiVP was implemented with right atrial and ventricular leads and a custom LV pacing array. Fifty-four LVPS-VVD combinations were tested in random order. Cardiac output was evaluated by aortic flow probe, ventricular systolic function by maximum rate of ventricular pressure change, and mechanical interventricular synchrony by normalized RV-LV pressure diagram area. Simultaneous LVPS-VVD variation improved all measures of cardiac function. The observed effect was different for each functional index, with evidence of LVPS-VVD interaction. Compared with effects of LVPS-VVD variation in a model of acute RV failure, hemodynamic changes were markedly different. However, in both models, maximum rate of ventricular pressure change of the failing ventricle was improved with synchronous interventricular contraction, suggesting that, in acute ventricular failure, BiVP can recruit the unstressed ventricle to support systolic function of the failing one. Thus simultaneously varying LVPS and VVD with BiVP during acute ventricular failure can improve cardiac function by "interventricular assist", with hemodynamic effects dependent on the type of failure. This supports the potential utility of temporary BiVP for the treatment of acute ventricular failure commonly seen after cardiac surgery.


Assuntos
Estimulação Cardíaca Artificial/métodos , Insuficiência Cardíaca/terapia , Disfunção Ventricular Esquerda/terapia , Disfunção Ventricular Direita/terapia , Função Ventricular Esquerda , Função Ventricular Direita , Doença Aguda , Animais , Pressão Sanguínea , Débito Cardíaco , Modelos Animais de Doenças , Técnicas Eletrofisiológicas Cardíacas , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Contração Miocárdica , Suínos , Fatores de Tempo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA