Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36978368

RESUMO

The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants' extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract's constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed -6.2 to -10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.

2.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36978408

RESUMO

Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB) and a significant health concern worldwide. The main threat to the elimination of TB is the development of resistance by MTB to the currently used antibiotics and more extended treatment methods, which is a massive burden on the health care system. As a result, there is an urgent need to identify new, effective therapeutic strategies with fewer adverse effects. The traditional medicines found in South Asia and Africa have a reservoir of medicinal plants and plant-based compounds that are considered another reliable option for human beings to treat various diseases. Abundant research is available for the biotherapeutic potential of naturally occurring compounds in various diseases but has been lagging in the area of TB. Plant-based compounds, or phytoproducts, are being investigated as potential anti-mycobacterial agents by reducing bacterial burden or modulating the immune system, thereby minimizing adverse effects. The efficacy of these phytochemicals has been evaluated through drug delivery using nanoformulations. This review aims to emphasize the value of anti-TB compounds derived from plants and provide a summary of current research on phytochemicals with potential anti-mycobacterial activity against MTB. This article aims to inform readers about the numerous potential herbal treatment options available for combatting TB.

3.
Antibiotics (Basel) ; 11(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139985

RESUMO

Leishmaniasis, a neglected tropical parasitic disease (NTPD), is caused by various Leishmania species. It transmits through the bites of the sandfly. The parasite is evolving resistance to commonly prescribed antileishmanial drugs; thus, there is an urgent need to discover novel antileishmanial drugs to combat drug-resistant leishmaniasis. Thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone; TQ), a primary pharmacologically active ingredient of Nigella sativa (black seed) essential oil, has been reported to possess significant antiparasitic activity. Therefore, the present study was designed to investigate the in vitro and in silico antileishmanial activity of TQ against various infectious stages of Leishmania major (L. major), i.e., promastigotes and amastigotes, and its cytotoxicity against mice macrophages. In silico molecular dockings of TQ were also performed with multiple selected target proteins of L. major, and the most preferred antileishmanial drug target protein was subjected to in silico molecular dynamics (MD) simulation. The in vitro antileishmanial activity of TQ revealed that the half-maximal effective concentration (EC50), half-maximal cytotoxic concentration (CC50), and selectivity index (SI) values for promastigotes are 2.62 ± 0.12 µM, 29.54 ± 0.07 µM, and 11.27, while for the amastigotes, they are 17.52 ± 0.15 µM, 29.54 ± 0.07 µM, and 1.69, respectively. The molecular docking studies revealed that squalene monooxygenase is the most preferred antileishmanial drug target protein for TQ, whereas triosephosphate isomerase is the least preferred. The MD simulation revealed that TQ remained stable in the binding pocket throughout the simulation. Additionally, the binding energy calculations using Molecular Mechanics Generalized-Born Surface Area (MMGBSA) indicated that TQ is a moderate binder. Thus, the current study shows that TQ is a promising antileishmanial drug candidate that could be used to treat existing drug-resistant leishmaniasis.

4.
Antioxidants (Basel) ; 11(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35204215

RESUMO

Artemisia judaica (ArJ) is a Mediterranean aromatic plant used traditionally to treat gastrointestinal ailments, skin diseases, atherosclerosis, and as an immuno-stimulant. This study describes ArJ essential oil constituents and investigates their wound healing activity. The in vitro antioxidant and antibiofilm activities of ArJ essential oil were investigated. The in vivo pro/anti-inflammatory and oxidative/antioxidant markers were compared with standard silver sulfadiazine (SS) in a second-degree skin burn experimental rat model. The gas chromatography-equipped flame ionization detector (GC-FID) analysis of ArJ essential oil revealed the major classes of compounds as oxygenated monoterpenes (>57%) and cinnamic acid derivatives (18.03%). The antimicrobial tests of ArJ essential oil revealed that Bacillus cereus, Candida albicans, and Aspergillus niger were the most susceptible test organisms. Two second-degree burns (each 1 inch square in diameter) were created on the dorsum of rats using an aluminum cylinder heated to 120 °C for 10 s. The wounds were treated either with ArJ or SS ointments for 21 days, while the negative control remained untreated, and biopsies were obtained for histological and biochemical analysis. The ArJ group demonstrated a significant increase in antioxidant superoxide dismutase (SOD) and catalase (CAT) enzymatic activities, while lipid peroxide (LP) levels remained insignificant compared to the negative control group. Additionally, ArJ and SS groups demonstrated a significant decrease in inflammatory levels of tumor necrosis factor α (TNF-α) compared to the negative group, while interleukin 1 beta (IL-1b) and IL-6 were comparable to the negative group. At the same time, anti-inflammatory IL-10 and transforming growth factor beta 1 (TGF-b1) markers increased significantly in the ArJ group compared to the negative control. The ArJ results demonstrated potent wound healing effects, comparable to SS, attributable to antioxidant and anti-inflammatory effects as well as a high proportion of oxygenated monoterpenes and cinnamate derivatives.

5.
Sci Rep ; 11(1): 14539, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267232

RESUMO

Streptomyces smyrnaeus UKAQ_23, isolated from the mangrove-sediment, collected from Jubail,Saudi Arabia, exhibited substantial antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), including non-MRSA Gram-positive test bacteria. The novel isolate, under laboratory-scale conditions, produced the highest yield (561.3 ± 0.3 mg/kg fermented agar) of antimicrobial compounds in modified ISP-4 agar at pH 6.5, temperature 35 °C, inoculum 5% v/w, agar 1.5% w/v, and an incubation period of 7 days. The two major compounds, K1 and K2, were isolated from fermented medium and identified as Actinomycin X2 and Actinomycin D, respectively, based on their structural analysis. The antimicrobial screening showed that Actinomycin X2 had the highest antimicrobial activity compared to Actinomycin D, and the actinomycins-mixture (X2:D, 1:1, w/w) against MRSA and non-MRSA Gram-positive test bacteria, at 5 µg/disc concentrations. The MIC of Actinomycin X2 ranged from 1.56-12.5 µg/ml for non-MRSA and 3.125-12.5 µg/ml for MRSA test bacteria. An in-silico molecular docking demonstrated isoleucyl tRNA synthetase as the most-favored antimicrobial protein target for both actinomycins, X2 and D, while the penicillin-binding protein-1a, was the least-favorable target-protein. In conclusion, Streptomyces smyrnaeus UKAQ_23 emerged as a promising source of Actinomycin X2 with the potential to be scaled up for industrial production, which could benefit the pharmaceutical industry.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dactinomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Streptomyces/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Simulação por Computador , Meios de Cultura/química , Dactinomicina/isolamento & purificação , Dactinomicina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fermentação , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Estrutura Molecular , Filogenia , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA