Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 177(2): 532-552, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535162

RESUMO

Microalgae are a promising feedstock for the production of triacylglycerol (TAG) for a variety of potential applications, ranging from food and human health to biofuels and green chemistry. However, obtaining high TAG yields is challenging. A phenotypic assay for the accumulation of oil droplets was developed to screen a library of 1,200 drugs, annotated with pharmacology information, to select compounds that trigger TAG accumulation in the diatom Phaeodactylum tricornutum Using this screen, we identified 34 molecules acting in a dose-dependent manner. Previously characterized targets of these compounds include cell division and cell signaling effectors, membrane receptors and transporters, and sterol metabolism. Among the five compounds possibly acting on sterol metabolism, we focused our study on ethynylestradiol, a synthetic form of estrogen that is used in contraceptive pills and known for its ecological impact as an endocrine disruptor. Ethynylestradiol impaired the production of very-long-chain polyunsaturated fatty acids, destabilized the galactolipid versus phospholipid balance, and triggered the recycling of fatty acids from membrane lipids to TAG. The P. tricornutum transcriptomic response to treatment with ethynylestradiol was consistent with the reallocation of carbon from sterols to acetyl-coenzyme A and TAG. The mode of action and catabolism of ethynylestradiol are unknown but might involve several up-regulated cytochrome P450 proteins. A fatty acid elongase, Δ6-ELO-B1, might be involved in the impairment of very-long-chain polyunsaturated fatty acids and fatty acid turnover. This phenotypic screen opens new perspectives for the exploration of novel bioactive molecules, potential target genes, and pathways controlling TAG biosynthesis. It also unraveled the sensitivity of diatoms to endocrine disruptors, highlighting an impact of anthropogenic pollution on phytoplankton.


Assuntos
Produtos Biológicos/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Triglicerídeos/metabolismo , Produtos Biológicos/administração & dosagem , Diatomáceas/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Estrona/farmacologia , Etinilestradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Front Chem ; 5: 21, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424769

RESUMO

Folates, also known as B9 vitamins, serve as donors and acceptors in one-carbon (C1) transfer reactions. The latter are involved in synthesis of many important biomolecules, such as amino acids, nucleic acids and vitamin B5. Folates also play a central role in the methyl cycle that provides one-carbon groups for methylation reactions. The important functions fulfilled by folates make them essential in all living organisms. Plants, being able to synthesize folates de novo, serve as an excellent dietary source of folates for animals that lack the respective biosynthetic pathway. Unfortunately, the most important staple crops such as rice, potato and maize are rather poor sources of folates. Insufficient folate consumption is known to cause severe developmental disorders in humans. Two approaches are employed to fight folate deficiency: pharmacological supplementation in the form of folate pills and biofortification of staple crops. As the former approach is considered rather costly for the major part of the world population, biofortification of staple crops is viewed as a decent alternative in the struggle against folate deficiency. Therefore, strategies, challenges and recent progress of folate enhancement in plants will be addressed in this review. Apart from the ever-growing need for the enhancement of nutritional quality of crops, the world population faces climate change catastrophes or environmental stresses, such as elevated temperatures, drought, salinity that severely affect growth and productivity of crops. Due to immense diversity of their biochemical functions, folates take part in virtually every aspect of plant physiology. Any disturbance to the plant folate metabolism leads to severe growth inhibition and, as a consequence, to a lower productivity. Whereas today's knowledge of folate biochemistry can be considered very profound, evidence on the physiological roles of folates in plants only starts to emerge. In the current review we will discuss the implication of folates in various aspects of plant physiology and development.

3.
Plant Physiol ; 167(1): 118-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25489020

RESUMO

Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profile of P. tricornutum grown with various levels of nitrogen or phosphorus supplies. In different P. tricornutum accessions collected worldwide, a deprivation of either nutrient triggered an accumulation of triacylglycerol, but with different time scales and magnitudes. We investigated in depth the effect of nutrient starvation on the Pt1 strain (Culture Collection of Algae and Protozoa no. 1055/3). Nitrogen deprivation was the more severe stress, triggering thylakoid senescence and growth arrest. By contrast, phosphorus deprivation induced a stepwise adaptive response. The time scale of the glycerolipidome changes and the comparison with large-scale transcriptome studies were consistent with an exhaustion of unknown primary phosphorus-storage molecules (possibly polyphosphate) and a transcriptional control of some genes coding for specific lipid synthesis enzymes. We propose that phospholipids are secondary phosphorus-storage molecules broken down upon phosphorus deprivation, while nonphosphorus lipids are synthesized consistently with a phosphatidylglycerol-to-sulfolipid and a phosphatidycholine-to-betaine lipid replacement followed by a late accumulation of triacylglycerol.


Assuntos
Diatomáceas/fisiologia , Lipídeos de Membrana/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Adaptação Fisiológica/fisiologia , Diatomáceas/metabolismo , Perfilação da Expressão Gênica , Lipídeos de Membrana/fisiologia , Tilacoides/metabolismo , Tilacoides/fisiologia , Triglicerídeos/metabolismo , Triglicerídeos/fisiologia
4.
J Biol Chem ; 287(26): 22367-76, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22577137

RESUMO

Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 µM. The growth rates of Arabidopsis thaliana, Toxoplasma gondii, and Plasmodium falciparum were inhibited by rubreserine with respective IC(50) values of 65, 20, and 1 µM. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms, the folate content was decreased by 40-50% in the presence of rubreserine. In both organisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC(50) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of T. gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.


Assuntos
Ácido 4-Aminobenzoico/farmacologia , Apicomplexa/metabolismo , Ácido Fólico/metabolismo , Fisostigmina/análogos & derivados , Extratos Vegetais/farmacologia , Animais , Antiparasitários/farmacologia , Arabidopsis/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Modelos Químicos , Fisostigmina/farmacologia , Fitoterapia/métodos , Plasmodium falciparum/metabolismo , Proteínas Recombinantes/metabolismo , Toxoplasma/metabolismo
5.
J Biol Chem ; 280(41): 34823-31, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16055441

RESUMO

The distribution of folates in plant cells suggests a complex traffic of the vitamin between the organelles and the cytosol. The Arabidopsis thaliana protein AtFOLT1 encoded by the At5g66380 gene is the closest homolog of the mitochondrial folate transporters (MFTs) characterized in mammalian cells. AtFOLT1 belongs to the mitochondrial carrier family, but GFP-tagging experiments and Western blot analyses indicated that it is targeted to the envelope of chloroplasts. By using the glycine auxotroph Chinese hamster ovary glyB cell line, which lacks a functional MFT and is deficient in folates transport into mitochondria, we showed by complementation that AtFOLT1 functions as a folate transporter in a hamster background. Indeed, stable transfectants bearing the AtFOLT1 cDNA have enhanced levels of folates in mitochondria and can support growth in glycine-free medium. Also, the expression of AtFOLT1 in Escherichia coli allows bacterial cells to uptake exogenous folate. Disruption of the AtFOLT1 gene in Arabidopsis does not lead to phenotypic alterations in folate-sufficient or folate-deficient plants. Also, the atfolt1 null mutant contains wild-type levels of folates in chloroplasts and preserves the enzymatic capacity to catalyze folate-dependent reactions in this subcellular compartment. These findings suggest strongly that, despite many common features shared by chloroplasts and mitochondria from mammals regarding folate metabolism, the folate import mechanisms in these organelles are not equivalent: folate uptake by mammalian mitochondria is mediated by a unique transporter, whereas there are alternative routes for folate import into chloroplasts.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/química , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/fisiologia , Western Blotting , Células CHO , Catálise , Clorofila/química , Cloroplastos/química , Clonagem Molecular , Cricetinae , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Ácido Fólico/metabolismo , Teste de Complementação Genética , Glicina/química , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Mitocôndrias/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Ácidos Nucleicos/química , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transfecção
6.
Plant J ; 40(4): 453-61, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15500462

RESUMO

In plants, the last step in the synthesis of p-aminobenzoate (PABA) moiety of folate remains to be elucidated. In Escherichia coli, this step is catalyzed by the PabC protein, a beta-lyase that converts 4-amino-4-deoxychorismate (ADC)--the reaction product of the PabA and PabB enzymes--to PABA and pyruvate. So far, the only known plant enzyme involved in PABA synthesis is ADC synthase, which has fused domains homologous to E. coli PabA and PabB and is located in plastids. ADC synthase has no lyase activity, implying that plants have a separate ADC lyase. No such lyase is known in any eukaryote. Genomic and phylogenetic approaches identified Arabidopsis and tomato cDNAs encoding PabC homologs with putative chloroplast-targeting peptides. These cDNAs were shown to encode functional enzymes by complementation of an E. coli pabC mutant, and by demonstrating that the partially purified recombinant proteins convert ADC to PABA. Plant ADC lyase is active as dimer and is not feedback inhibited by physiologic concentrations of PABA, its glucose ester, or folates. The full-length Arabidopsis ADC lyase polypeptide was translocated into isolated pea chloroplasts and, when fused to green fluorescent protein, directed the passenger protein to Arabidopsis chloroplasts in transient expression experiments. These data indicate that ADC lyase, like ADC synthase, is present in plastids. As shown previously for the ADC synthase transcript, the level of ADC lyase mRNA in the pericarp of tomato fruit falls sharply as ripening advances, suggesting that the expression of these two enzymes is coregulated.


Assuntos
Arabidopsis/enzimologia , Ácido Fólico/biossíntese , Oxo-Ácido-Liases/metabolismo , Plastídeos/enzimologia , Solanum lycopersicum/enzimologia , Transaminases/metabolismo , Sequência de Aminoácidos , Catálise , DNA Complementar/química , DNA de Plantas/química , Escherichia coli/enzimologia , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Filogenia , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
7.
J Biol Chem ; 279(21): 22548-57, 2004 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-15024005

RESUMO

The subcellular distribution of Met and S-adenosylmethionine (AdoMet) metabolism in plant cells discloses a complex partition between the cytosol and the organelles. In the present work we show that Arabidopsis contains three functional isoforms of vitamin B(12)-independent methionine synthase (MS), the enzyme that catalyzes the methylation of homocysteine to Met with 5-methyltetrahydrofolate as methyl group donor. One MS isoform is present in chloroplasts and is most likely required to methylate homocysteine that is synthesized de novo in this compartment. Thus, chloroplasts are autonomous and are the unique site for de novo Met synthesis in plant cells. The additional MS isoforms are present in the cytosol and are most probably involved in the regeneration of Met from homocysteine produced in the course of the activated methyl cycle. Although Met synthesis can occur in chloroplasts, there is no evidence that AdoMet is synthesized anywhere but the cytosol. In accordance with this proposal, we show that AdoMet is transported into chloroplasts by a carrier-mediated facilitated diffusion process. This carrier is able to catalyze the uniport uptake of AdoMet into chloroplasts as well as the exchange between cytosolic AdoMet and chloroplastic AdoMet or S-adenosylhomocysteine. The obvious function for the carrier is to sustain methylation reactions and other AdoMet-dependent functions in chloroplasts and probably to remove S-adenosylhomocysteine generated in the stroma by methyltransferase activities. Therefore, the chloroplastic AdoMet carrier serves as a link between cytosolic and chloroplastic one-carbon metabolism.


Assuntos
Cloroplastos/metabolismo , Citosol/metabolismo , Metionina/química , Metionina/metabolismo , S-Adenosilmetionina/química , Arabidopsis/metabolismo , Western Blotting , Clonagem Molecular , DNA Complementar/metabolismo , Difusão , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Homocisteína/química , Immunoblotting , Cinética , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Pisum sativum , Filogenia , Plastídeos/metabolismo , Isoformas de Proteínas , Fatores de Tempo , Vitamina B 12/metabolismo
8.
Plant Mol Biol ; 52(6): 1153-68, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14682615

RESUMO

Formate dehydrogenase (FDH, EC 1.2.1.2.) is a soluble mitochondrial enzyme capable of oxidizing formate into CO2 in the presence of NAD+. It is abundant in non-green tissues and scarce in photosynthetic tissues. Under stress, FDH transcripts (and protein) accumulate in leaves, and leaf mitochondria acquire the ability to use formate as a respiratory substrate. In this paper, we describe the analysis of transgenic potato plants under-expressing FDH, obtained in order to understand the physiological function of FDH. Plants expressing low FDH activities were selected and the study was focused on a line (AS23) showing no detectable FDH activity. AS23 plants were morphologically indistinguishable from control plants, and grew normally under standard conditions. However, mitochondria isolated from AS23 tubers could not use formate as a respiratory substrate. Steady-state levels of formate were higher in AS23 leaves and tubers than in control plants. Tubers of untransformed plants oxidized 14C formate into 14CO2 but AS23 tubers accumulated it. In order to reveal a possible phenotype under stress conditions, control and AS23 plants were submitted to drought and cold. These treatments dramatically induced FDH transcripts in control plants but, whatever the growth conditions, no 1.4 kb FDH transcripts were detected in leaves of AS23 plants. Amongst various biochemical and molecular differences between stressed AS23 and control plants, the most striking was a dramatically faster accumulation of proline in the leaves of drought-stressed plants under-expressing FDH.


Assuntos
Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Prolina/metabolismo , Solanum tuberosum/enzimologia , Aminoácidos/metabolismo , Temperatura Baixa , Desastres , Formaldeído/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Cinética , Espectroscopia de Ressonância Magnética/métodos , Metanol/metabolismo , Pressão Osmótica , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA