RESUMO
BACKGROUND & AIMS: Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS: The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS: At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION: Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.
Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Disbiose , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Fezes , Terapia Biológica , Fator de Necrose Tumoral alfa , Complexo Antígeno L1 Leucocitário , NecroseRESUMO
The hormonally-active form of vitamin D, 1,25-dihydroxyvitamin D3, can modulate both innate and adaptive immunity, through binding to the nuclear vitamin D receptor expressed in most immune cells. A high dose of regular vitamin D protected non-obese diabetic (NOD) mice against type 1 diabetes (T1D), when initiated at birth and given lifelong. However, considerable controversy exists on the level of circulating vitamin D (25-hydroxyvitamin D3, 25(OH)D3) needed to modulate the immune system in autoimmune-prone subjects and protect against T1D onset. Here, we evaluated the impact of two doses of dietary vitamin D supplementation (400 and 800 IU/day), given to female NOD mice from 3 until 25 weeks of age, on disease development, peripheral and gut immune system, gut epithelial barrier function, and gut bacterial taxonomy. Whereas serum 25(OH)D3 concentrations were 2.6- (400 IU/day) and 3.9-fold (800 IU/day) higher with dietary vitamin D supplementation compared to normal chow (NC), only the 800 IU/day vitamin D-supplemented diet delayed and reduced T1D incidence compared to NC. Flow cytometry analyses revealed an increased frequency of FoxP3+ Treg cells in the spleen of mice receiving the 800 IU/day vitamin D-supplemented diet. This vitamin D-induced increase in FoxP3+ Treg cells, also expressing the ecto-5'-nucleotidase CD73, only persisted in the spleen of mice at 25 weeks of age. At this time point, the frequency of IL-10-secreting CD4+ T cells was also increased in all studied immune organs. High-dose vitamin D supplementation was unable to correct gut leakiness nor did it significantly modify the increased gut microbial diversity and richness over time observed in NOD mice receiving NC. Intriguingly, the rise in alpha-diversity during maturation occurred especially in mice not progressing to hyperglycaemia. Principal coordinates analysis identified that both diet and disease status significantly influenced the inter-individual microbiota variation at the genus level. The abundance of the genera Ruminoclostridium_9 and Marvinbryantia gradually increased or decreased, respectively in faecal samples of mice on the 800 IU/day vitamin D-supplemented diet compared to mice on the 400 IU/day vitamin D-supplemented diet or NC, irrespective of disease outcome. In summary, dietary vitamin D reduced T1D incidence in female NOD mice at a dose of 800, but not of 400, IU/day, and was accompanied by an expansion of Treg cells in various lymphoid organs and an altered intestinal microbiota signature.
Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Animais , Dieta , Feminino , Fatores de Transcrição Forkhead , Humanos , Camundongos , Camundongos Endogâmicos NOD , Vitamina D , VitaminasRESUMO
A promising new treatment approach for major depressive disorder (MDD) targets the microbiota-gut-brain (MGB) axis, which is linked to physiological and behavioral functions affected in MDD. This is the first randomized controlled trial to determine whether short-term, high-dose probiotic supplementation reduces depressive symptoms along with gut microbial and neural changes in depressed patients. Patients with current depressive episodes took either a multi-strain probiotic supplement or placebo over 31 days additionally to treatment-as-usual. Assessments took place before, immediately after and again four weeks after the intervention. The Hamilton Depression Rating Sale (HAM-D) was assessed as primary outcome. Quantitative microbiome profiling and neuroimaging was used to detect changes along the MGB axis. In the sample that completed the intervention (probiotics N = 21, placebo N = 26), HAM-D scores decreased over time and interactions between time and group indicated a stronger decrease in the probiotics relative to the placebo group. Probiotics maintained microbial diversity and increased the abundance of the genus Lactobacillus, indicating the effectivity of the probiotics to increase specific taxa. The increase of the Lactobacillus was associated with decreased depressive symptoms in the probiotics group. Finally, putamen activation in response to neutral faces was significantly decreased after the probiotic intervention. Our data imply that an add-on probiotic treatment ameliorates depressive symptoms (HAM-D) along with changes in the gut microbiota and brain, which highlights the role of the MGB axis in MDD and emphasizes the potential of microbiota-related treatment approaches as accessible, pragmatic, and non-stigmatizing therapies in MDD. Trial Registration: www.clinicaltrials.gov , identifier: NCT02957591.
Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Probióticos , Transtorno Depressivo Maior/tratamento farmacológico , Suplementos Nutricionais , Humanos , Probióticos/farmacologia , Probióticos/uso terapêuticoRESUMO
PURPOSE: Both HIV and oral iron interventions may alter gut microbiota composition and increase gut inflammation. We determined the effect of oral iron supplementation on gut microbiota composition, gut inflammation, and iron status in iron-depleted South Africa school-aged children living with HIV (HIV+) but virally suppressed on antiretroviral therapy and children without HIV (HIV-ve). METHODS: In this before-after intervention study with case-control comparisons, we provided 55 mg elemental iron from ferrous sulphate, once daily for 3 months, to 33 virally suppressed (< 50 HIV RNA copies/mL) HIV+ and 31 HIV-ve children. At baseline and endpoint, we assessed microbial composition of faecal samples (16S rRNA sequencing), and markers of gut inflammation (faecal calprotectin), anaemia (haemoglobin) and iron status (plasma ferritin, soluble transferrin receptor). This study was nested within a larger trial registered at clinicaltrials.gov as NCT03572010. RESULTS: HIV+ (11.3y SD ± 1.8, 46% male) and HIV-ve (11.1y SD ± 1.7, 52% male) groups did not significantly differ in age or sex ratio. Following iron supplementation, improvements were observed in haemoglobin (HIV+ : 118 to 124 g/L, P = 0.003; HIV-ve: 120 to 124 g/L, P = 0.003), plasma ferritin (HIV+ : 15 to 34 µg/L, P < 0.001; HIV-ve: 18 to 37 µg/L, P < 0.001), and soluble transferrin receptor (HIV+ : 7.1 to 5.9 mg/L, P < 0.001; HIV-ve: 6.6 to 5.7 mg/L, P < 0.001), with no significant change in the relative abundance of any genera, alpha diversity of the gut microbiota (HIV+ : P = 0.37; HIV-ve: P = 0.77), or faecal calprotectin (HIV+ : P = 0.42; HIV-ve: P = 0.80). CONCLUSION: Our findings suggest that oral iron supplementation can significantly improve haemoglobin and iron status without increasing pathogenic gut microbial taxa or gut inflammation in iron-depleted virally suppressed HIV+ and HIV-ve school-age children.
Assuntos
Anemia Ferropriva , Microbioma Gastrointestinal , Infecções por HIV , Anemia Ferropriva/tratamento farmacológico , Criança , Suplementos Nutricionais , Feminino , Ferritinas , Infecções por HIV/tratamento farmacológico , Hemoglobinas , Humanos , Inflamação , Ferro , Complexo Antígeno L1 Leucocitário , Masculino , RNA Ribossômico 16S/genética , Receptores da Transferrina , África do SulRESUMO
Metabolic syndrome is characterized by a constellation of comorbidities that predispose individuals to an increased risk of developing cardiovascular pathologies as well as type 2 diabetes mellitus1. The gut microbiota is a new key contributor involved in the onset of obesity-related disorders2. In humans, studies have provided evidence for a negative correlation between Akkermansia muciniphila abundance and overweight, obesity, untreated type 2 diabetes mellitus or hypertension3-8. Since the administration of A. muciniphila has never been investigated in humans, we conducted a randomized, double-blind, placebo-controlled pilot study in overweight/obese insulin-resistant volunteers; 40 were enrolled and 32 completed the trial. The primary end points were safety, tolerability and metabolic parameters (that is, insulin resistance, circulating lipids, visceral adiposity and body mass). Secondary outcomes were gut barrier function (that is, plasma lipopolysaccharides) and gut microbiota composition. In this single-center study, we demonstrated that daily oral supplementation of 1010 A. muciniphila bacteria either live or pasteurized for three months was safe and well tolerated. Compared to placebo, pasteurized A. muciniphila improved insulin sensitivity (+28.62 ± 7.02%, P = 0.002), and reduced insulinemia (-34.08 ± 7.12%, P = 0.006) and plasma total cholesterol (-8.68 ± 2.38%, P = 0.02). Pasteurized A. muciniphila supplementation slightly decreased body weight (-2.27 ± 0.92 kg, P = 0.091) compared to the placebo group, and fat mass (-1.37 ± 0.82 kg, P = 0.092) and hip circumference (-2.63 ± 1.14 cm, P = 0.091) compared to baseline. After three months of supplementation, A. muciniphila reduced the levels of the relevant blood markers for liver dysfunction and inflammation while the overall gut microbiome structure was unaffected. In conclusion, this proof-of-concept study (clinical trial no. NCT02637115 ) shows that the intervention was safe and well tolerated and that supplementation with A. muciniphila improves several metabolic parameters.
Assuntos
Suplementos Nutricionais , Obesidade/dietoterapia , Sobrepeso/dietoterapia , Verrucomicrobia , Adulto , Idoso , Método Duplo-Cego , Fezes/microbiologia , Microbioma Gastrointestinal , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/microbiologia , Sobrepeso/metabolismo , Sobrepeso/microbiologia , Projetos PilotoRESUMO
Biological psychiatry research has long focused on the brain in elucidating the neurobiological mechanisms of anxiety- and trauma-related disorders. This review challenges this assumption and suggests that the gut microbiome and its interactome also deserve attention to understand brain disorders and develop innovative treatments and diagnostics in the 21st century. The recent, in-depth characterization of the human microbiome spurred a paradigm shift in human health and disease. Animal models strongly suggest a role for the gut microbiome in anxiety- and trauma-related disorders. The microbiota-gut-brain (MGB) axis sits at the epicenter of this new approach to mental health. The microbiome plays an important role in the programming of the hypothalamic-pituitary-adrenal (HPA) axis early in life, and stress reactivity over the life span. In this review, we highlight emerging findings of microbiome research in psychiatric disorders, focusing on anxiety- and trauma-related disorders specifically, and discuss the gut microbiome as a potential therapeutic target. 16S rRNA sequencing has enabled researchers to investigate and compare microbial composition between individuals. The functional microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, and metabolomics, as discussed in the present review. Other factors that shape the gut microbiome should be considered to obtain a holistic view of the factors at play in the complex interactome linked to the MGB. In all, we underscore the importance of microbiome science, and gut microbiota in particular, as emerging critical players in mental illness and maintenance of mental health. This new frontier of biological psychiatry and postgenomic medicine should be embraced by the mental health community as it plays an ever-increasing transformative role in integrative and holistic health research in the next decade.
Assuntos
Ansiedade/microbiologia , Microbioma Gastrointestinal/fisiologia , Transtornos Mentais/microbiologia , Transtornos Relacionados a Trauma e Fatores de Estresse/microbiologia , Animais , Ansiedade/genética , Microbioma Gastrointestinal/genética , Humanos , Transtornos Mentais/genética , Saúde Mental , RNA Ribossômico 16S/genética , Transtornos Relacionados a Trauma e Fatores de Estresse/genéticaRESUMO
Chronic inflammatory diseases (CIDs), including Crohn's disease and ulcerative colitis (inflammatory bowel diseases, IBD), rheumatoid arthritis, psoriasis, psoriatic arthritis, spondyloarthritides, hidradenitis suppurativa, and immune-mediated uveitis, are treated with biologics targeting the pro-inflammatory molecule tumour necrosis factor-α (TNF) (i.e., TNF inhibitors). Approximately one-third of the patients do not respond to the treatment. Genetics and lifestyle may affect the treatment results. The aims of this multidisciplinary collaboration are to identify (1) molecular signatures of prognostic value to help tailor treatment decisions to an individual likely to initiate TNF inhibitor therapy, followed by (2) lifestyle factors that support achievement of optimised treatment outcome. This report describes the establishment of a cohort that aims to obtain this information. Clinical data including lifestyle and treatment response and biological specimens (blood, faeces, urine, and, in IBD patients, intestinal biopsies) are sampled prior to and while on TNF inhibitor therapy. Both hypothesis-driven and data-driven analyses will be performed according to pre-specified protocols including pathway analyses resulting from candidate gene expression analyses and global approaches (e.g., metabolomics, metagenomics, proteomics). The final purpose is to improve the lives of patients suffering from CIDs, by providing tools facilitating treatment selection and dietary recommendations likely to improve the clinical outcome.
Assuntos
Doenças Inflamatórias Intestinais/dietoterapia , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Estilo de Vida , Medicina de Precisão , Biomarcadores/sangue , Índice de Massa Corporal , Dinamarca , Dieta , Gorduras na Dieta/administração & dosagem , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Exercício Físico , Ácidos Graxos Insaturados/administração & dosagem , Feminino , Seguimentos , Interação Gene-Ambiente , Humanos , Mucosa Intestinal/metabolismo , Masculino , Carne , Micronutrientes/administração & dosagem , Estudos Prospectivos , Fumar/terapia , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
Available evidence on the bioactive, nutritional and putative detrimental properties of gut microbial metabolites has been evaluated to support a more integrated view of how prebiotics might affect host health throughout life. The present literature inventory targeted evidence for the physiological and nutritional effects of metabolites, for example, SCFA, the potential toxicity of other metabolites and attempted to determine normal concentration ranges. Furthermore, the biological relevance of more holistic approaches like faecal water toxicity assays and metabolomics and the limitations of faecal measurements were addressed. Existing literature indicates that protein fermentation metabolites (phenol, p-cresol, indole, ammonia), typically considered as potentially harmful, occur at concentration ranges in the colon such that no toxic effects are expected either locally or following systemic absorption. The endproducts of saccharolytic fermentation, SCFA, may have effects on colonic health, host physiology, immunity, lipid and protein metabolism and appetite control. However, measuring SCFA concentrations in faeces is insufficient to assess the dynamic processes of their nutrikinetics. Existing literature on the usefulness of faecal water toxicity measures as indicators of cancer risk seems limited. In conclusion, at present there is insufficient evidence to use changes in faecal bacterial metabolite concentrations as markers of prebiotic effectiveness. Integration of results from metabolomics and metagenomics holds promise for understanding the health implications of prebiotic microbiome modulation but adequate tools for data integration and interpretation are currently lacking. Similarly, studies measuring metabolite fluxes in different body compartments to provide a more accurate picture of their nutrikinetics are needed.