Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chem ; 95(15): 6203-6211, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023366

RESUMO

Drug combinations are commonly used to treat various diseases to achieve synergistic therapeutic effects or to alleviate drug resistance. Nevertheless, some drug combinations might lead to adverse effects, and thus, it is crucial to explore the mechanisms of drug interactions before clinical treatment. Generally, drug interactions have been studied using nonclinical pharmacokinetics, toxicology, and pharmacology. Here, we propose a complementary strategy based on metabolomics, which we call interaction metabolite set enrichment analysis, or iMSEA, to decipher drug interactions. First, a digraph-based heterogeneous network model was constructed to model the biological metabolic network based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Second, treatment-specific influences on all detected metabolites were calculated and propagated across the whole network model. Third, pathway activity was defined and enriched to quantify the influence of each treatment on the predefined functional metabolite sets, i.e., metabolic pathways. Finally, drug interactions were identified by comparing the pathway activity enriched by the drug combination treatments and the single drug treatments. A data set consisting of hepatocellular carcinoma (HCC) cells that were treated with oxaliplatin (OXA) and/or vitamin C (VC) was used to illustrate the effectiveness of the iMSEA strategy for evaluation of drug interactions. Performance evaluation using synthetic noise data was also performed to evaluate sensitivities and parameter settings for the iMSEA strategy. The iMSEA strategy highlighted synergistic effects of combined OXA and VC treatments including the alterations in the glycerophospholipid metabolism pathway and glycine, serine, and threonine metabolism pathway. This work provides an alternative method to reveal the mechanisms of drug combinations from the viewpoint of metabolomics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Metabolômica/métodos , Redes e Vias Metabólicas , Interações Medicamentosas
2.
Nutrients ; 14(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684021

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor required for proper functioning of all cells and its decline is correlated with advancing age and disease. This randomized, triple-blind, placebo-controlled, crossover pilot study assessed the efficacy and safety of a combination of nicotinamide with D-ribose (RiaGev) for NAD metabolome enhancement and related benefits in healthy middle-aged adults. Supplementing with 1520 mg RiaGev twice daily for 7 days significantly increased the NAD+ metabolome in blood, especially NADP+ by 27% compared to the placebo group (p = 0.033) and over the baseline (p = 0.007). Increases in glutathione and high energy phosphates were also observed in the blood. Seven-day supplementation with RiaGev significantly (p = 0.013) reduced overall blood glucose without significant changes in insulin secretion (p = 0.796), suggesting an improved insulin sensitivity and glucose tolerance. The waking salivary cortisol of the subjects steadily and significantly decreased (p = 0.026) in the RiaGev group in contrast to the placebo. Subjects in the RiaGev group showed less fatigue, improved mental concentration and motivation over the baseline (p = 0.015, 0.018, and 0.012, respectively) as observed through the Checklist Individual Strength (CIS) questionnaire. There were no clinically relevant adverse events, or alterations in hematology, electrolytes, liver, and kidney markers pre- and post-supplementation. RiaGev appears to be safe and efficacious in increasing NAD+ metabolome in healthy middle-aged adults, as shown by this study.


Assuntos
NAD , Niacinamida , Adulto , Humanos , Metaboloma , Pessoa de Meia-Idade , NAD/metabolismo , Projetos Piloto , Ribose
3.
Nutrients ; 12(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575611

RESUMO

Plant lignans and their microbial metabolites, e.g., enterolactone (ENL), may affect bile acid (BA) metabolism through interaction with hepatic receptors. We evaluated the effects of a flaxseed lignan extract (50 mg/day secoisolariciresinol diglucoside) compared to a placebo for 60 days each on plasma BA concentrations in 46 healthy men and women (20-45 years) using samples from a completed randomized, crossover intervention. Twenty BA species were measured in fasting plasma using LC-MS. ENL was measured in 24-h urines by GC-MS. We tested for (a) effects of the intervention on BA concentrations overall and stratified by ENL excretion; and (b) cross-sectional associations between plasma BA and ENL. We also explored the overlap in bacterial metabolism at the genus level and conducted in vitro anaerobic incubations of stool with lignan substrate to identify genes that are enriched in response to lignan metabolism. There were no intervention effects, overall or stratified by ENL at FDR < 0.05. In the cross-sectional analysis, irrespective of treatment, five secondary BAs were associated with ENL excretion (FDR < 0.05). In vitro analyses showed positive associations between ENL production and bacterial gene expression of the bile acid-inducible gene cluster and hydroxysteroid dehydrogenases. These data suggest overlap in community bacterial metabolism of secondary BA and ENL.


Assuntos
Ácidos e Sais Biliares/sangue , Linho/metabolismo , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Adulto , Cromatografia Líquida , Estudos Cross-Over , Estudos Transversais , Método Duplo-Cego , Feminino , Humanos , Lignanas/metabolismo , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Extratos Vegetais/metabolismo , Adulto Jovem
4.
BMC Genomics ; 21(1): 341, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366330

RESUMO

BACKGROUND: Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS: We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS: This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.


Assuntos
Drosophila melanogaster/fisiologia , Peróxido de Hidrogênio/metabolismo , Metaboloma , Estresse Oxidativo/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Ácido Fólico/metabolismo , Genes de Insetos/genética , Variação Genética , Genoma de Inseto/genética , Genótipo , Glicogênio/metabolismo , Redes e Vias Metabólicas/genética , Herança Multifatorial , Fenótipo
5.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8533, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31330071

RESUMO

RATIONALE: Aporphine alkaloids represent a large group of isoquinoline natural products with important roles in biological and biomedical areas. Their characterization by electrospray ionization tandem mass spectrometry (ESI-MS/MS) can contribute to their rapid identification in complex biological matrices. METHODS: We report the fragmentation of protonated 7,7-dimethylaporphine alkaloids by ESI-MS/MS, and the putative annotation of aporphine alkaloids in plant extracts. We used low- and high-resolution MS/MS analyses to rationalize the fragmentation pathways, and employed the B3LYP/6-31 + G(d,p) density functional theory (DFT) model to provide thermochemical parameters and to obtain the reactive sites. RESULTS: DFT calculations of a set of 7,7-dimethylaporphine alkaloids suggested the heterocyclic amino group as the most basic site due to the proton affinity of the nitrogen atom. Collision-induced dissociation experiments promoted • OCH3 elimination instead of the expected neutral loss of the heterocyclic amino group, pointing to the [M - 15 + H]•+ ion as the diagnostic fragment for 7,7-dimethylaporphine alkaloids. The analysis of plant extracts led to the annotation of 25 aporphine alkaloids. Their fragmentation initiated with the loss of the amino group followed by formation of a cyclic carbocation. Further reactions derived from consecutive charge-remote and/or charge-induced fragmentations of the substituents attached to the aromatic system. The mechanisms were re-examined based on plausible gas-phase ion chemistry reactions. CONCLUSIONS: Taken together, the diagnostic product ions and the series of radical and neutral eliminations provided information about the location of methylenedioxy, aromatic methoxy, and vicinal methoxy and hydroxy groups in aporphine alkaloids, assisting their characterization via MS/MS.

6.
Circ Res ; 126(2): 182-196, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31709908

RESUMO

RATIONALE: Hypertrophied hearts switch from mainly using fatty acids (FAs) to an increased reliance on glucose for energy production. It has been shown that preserving FA oxidation (FAO) prevents the pathological shift of substrate preference, preserves cardiac function and energetics, and reduces cardiomyocyte hypertrophy during cardiac stresses. However, it remains elusive whether substrate metabolism regulates cardiomyocyte hypertrophy directly or via a secondary effect of improving cardiac energetics. OBJECTIVE: The goal of this study was to determine the mechanisms of how preservation of FAO prevents the hypertrophic growth of cardiomyocytes. METHODS AND RESULTS: We cultured adult rat cardiomyocytes in a medium containing glucose and mixed-chain FAs and induced pathological hypertrophy by phenylephrine. Phenylephrine-induced hypertrophy was associated with increased glucose consumption and higher intracellular aspartate levels, resulting in increased synthesis of nucleotides, RNA, and proteins. These changes could be prevented by increasing FAO via deletion of ACC2 (acetyl-CoA-carboxylase 2) in phenylephrine-stimulated cardiomyocytes and in pressure overload-induced cardiac hypertrophy in vivo. Furthermore, aspartate supplementation was sufficient to reverse the antihypertrophic effect of ACC2 deletion demonstrating a causal role of elevated aspartate level in cardiomyocyte hypertrophy. 15N and 13C stable isotope tracing revealed that glucose but not glutamine contributed to increased biosynthesis of aspartate, which supplied nitrogen for nucleotide synthesis during cardiomyocyte hypertrophy. CONCLUSIONS: Our data show that increased glucose consumption is required to support aspartate synthesis that drives the increase of biomass during cardiac hypertrophy. Preservation of FAO prevents the shift of metabolic flux into the anabolic pathway and maintains catabolic metabolism for energy production, thus preventing cardiac hypertrophy and improving myocardial energetics.


Assuntos
Ácido Aspártico/biossíntese , Cardiomegalia/metabolismo , Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Ácido Aspártico/farmacologia , Cardiomegalia/etiologia , Células Cultivadas , Ácidos Graxos/metabolismo , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar
7.
J Proteome Res ; 17(6): 2092-2101, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688022

RESUMO

Obesity is fast becoming a serious health problem worldwide. Of the many possible antiobesity strategies, one interesting approach focuses on blocking adipocyte differentiation and lipid accumulation to counteract the rise in fat storage. However, there is currently no drug available for the treatment of obesity that works by inhibiting adipocyte differentiation. Here we use a broad-based metabolomics approach to interrogate and better understand metabolic changes that occur during adipocyte differentiation. In particular, we focus on changes induced by the antiadipogenic diarylheptanoid, which was isolated from a traditional Chinese medicine Dioscorea zingiberensis and identified as (3 R,5 R)-3,5-dihydroxy-1-(3,4-dihydroxyphenyl)-7-(4-hydroxyphenyl)-heptane (1). Targeted aqueous metabolic profiling indicated that a total of 14 metabolites involved in the TCA cycle, glycolysis, amino acid metabolism, and purine catabolism participate in regulating energy metabolism, lipogenesis, and lipolysis in adipocyte differentiation and can be modulated by diarylheptanoid 1. As indicated by lipidomics analysis, diarylheptanoid 1 restored the quantity and degree of unsaturation of long-chain free fatty acids and restored the levels of 171 lipids mainly from 10 lipid classes in adipocytes. In addition, carbohydrate metabolism in diarylheptanoid-1-treated adipocytes further demonstrated the delayed differentiation process by flux analysis. Our results provide valuable information for further understanding the metabolic adjustment in adipocytes subjected to diarylheptanoid 1 treatment. Moreover, this study offers new insight into developing antiadipogenic leading compounds based on metabolomics.


Assuntos
Adipócitos/efeitos dos fármacos , Diarileptanoides/farmacologia , Metabolômica/métodos , Células 3T3-L1 , Adipócitos/química , Adipócitos/citologia , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético , Camundongos
8.
PLoS One ; 12(12): e0186459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211728

RESUMO

OBJECTIVES: The co-primary objectives of this study were to determine the human pharmacokinetics (PK) of oral NR and the effect of NR on whole blood nicotinamide adenine dinucleotide (NAD+) levels. BACKGROUND: Though mitochondrial dysfunction plays a critical role in the development and progression of heart failure, no mitochondria-targeted therapies have been translated into clinical practice. Recent murine studies have reported associations between imbalances in the NADH/NAD+ ratio with mitochondrial dysfunction in multiple tissues, including myocardium. Moreover, an NAD+ precursor, nicotinamide mononucleotide, improved cardiac function, while another NAD+ precursor, nicotinamide riboside (NR), improved mitochondrial function in muscle, liver and brown adipose. Thus, PK studies of NR in humans is critical for future clinical trials. METHODS: In this non-randomized, open-label PK study of 8 healthy volunteers, 250 mg NR was orally administered on Days 1 and 2, then uptitrated to peak dose of 1000 mg twice daily on Days 7 and 8. On the morning of Day 9, subjects completed a 24-hour PK study after receiving 1000 mg NR at t = 0. Whole-blood levels of NR, clinical blood chemistry, and NAD+ levels were analyzed. RESULTS: Oral NR was well tolerated with no adverse events. Significant increases comparing baseline to mean concentrations at steady state (Cave,ss) were observed for both NR (p = 0.03) and NAD+ (p = 0.001); the latter increased by 100%. Absolute changes from baseline to Day 9 in NR and NAD+ levels correlated highly (R2 = 0.72, p = 0.008). CONCLUSIONS: Because NR increases circulating NAD+ in humans, NR may have potential as a therapy in patients with mitochondrial dysfunction due to genetic and/or acquired diseases.


Assuntos
Suplementos Nutricionais , Voluntários Saudáveis , NAD/sangue , Niacinamida/análogos & derivados , Administração Oral , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Niacinamida/administração & dosagem , Niacinamida/efeitos adversos , Niacinamida/sangue , Niacinamida/farmacocinética , Compostos de Piridínio , Adulto Jovem
9.
Food Funct ; 8(9): 3209-3218, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28808723

RESUMO

Enterolignans, products of gut bacterial metabolism of plant lignans, have been associated with reduced risk of chronic diseases, but their association with other plasma metabolites is unknown. We examined plasma metabolite profiles according to urinary enterolignan excretion in a cross-sectional analysis using data from a randomized crossover, controlled feeding study. Eighty healthy adult males and females completed two 28-day feeding periods differing by glycemic load, refined carbohydrate, and fiber content. Lignan intake was calculated from food records using a polyphenol database. Targeted metabolomics was performed by LC-MS on plasma from fasting blood samples collected at the end of each feeding period. Enterolactone (ENL) and enterodiol, were measured in 24 h urine samples collected on the penultimate day of each study period using GC-MS. Linear mixed models were used to test the association between enterolignan excretion and metabolite abundances. Pathway analyses were conducted using the Global Test. Benjamini-Hochberg false discovery rate (FDR) was used to control for multiple testing. Of the metabolites assayed, 121 were detected in all samples. ENL excretion was associated positively with plasma hippuric acid and melatonin, and inversely with epinephrine, creatine, glycochenodeoxycholate, and glyceraldehyde (P < 0.05). Hippuric acid only satisfied the FDR of q < 0.1. END excretion was associated with myristic acid and glycine (q < 0.5). Two of 57 pathways tested were associated significantly with ENL, ubiquinone and terpenoid-quinone biosynthesis, and inositol phosphate metabolism. These results suggest a potential role for ENL or ENL-metabolizing gut bacteria in regulating plasma metabolites.


Assuntos
4-Butirolactona/análogos & derivados , Lignanas/sangue , Lignanas/urina , 4-Butirolactona/sangue , 4-Butirolactona/urina , Adulto , Estudos Cross-Over , Estudos Transversais , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Fitoestrógenos , Extratos Vegetais
10.
Front Mol Biosci ; 3: 59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747213

RESUMO

Dereplication based on hyphenated techniques has been extensively applied in plant metabolomics, thereby avoiding re-isolation of known natural products. However, due to the complex nature of biological samples and their large concentration range, dereplication requires the use of chemometric tools to comprehensively extract information from the acquired data. In this work we developed a reliable GC-MS-based method for the identification of non-targeted plant metabolites by combining the Ratio Analysis of Mass Spectrometry deconvolution tool (RAMSY) with Automated Mass Spectral Deconvolution and Identification System software (AMDIS). Plants species from Solanaceae, Chrysobalanaceae and Euphorbiaceae were selected as model systems due to their molecular diversity, ethnopharmacological potential, and economical value. The samples were analyzed by GC-MS after methoximation and silylation reactions. Dereplication was initiated with the use of a factorial design of experiments to determine the best AMDIS configuration for each sample, considering linear retention indices and mass spectral data. A heuristic factor (CDF, compound detection factor) was developed and applied to the AMDIS results in order to decrease the false-positive rates. Despite the enhancement in deconvolution and peak identification, the empirical AMDIS method was not able to fully deconvolute all GC-peaks, leading to low MF values and/or missing metabolites. RAMSY was applied as a complementary deconvolution method to AMDIS to peaks exhibiting substantial overlap, resulting in recovery of low-intensity co-eluted ions. The results from this combination of optimized AMDIS with RAMSY attested to the ability of this approach as an improved dereplication method for complex biological samples such as plant extracts.

11.
Magn Reson Chem ; 47 Suppl 1: S74-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19610016

RESUMO

New methods for obtaining metabolic fingerprints of biological samples with improved resolution and sensitivity are highly sought for early disease detection, studies of human health and pathophysiology, and for better understanding systems biology. Considering the complexity of biological samples, interest in biochemical class selection through the use of chemoselective probes for improved resolution and quantitation is increasing. Considering the role of lipids in the pathogenesis of a number of diseases, in this study fingerprinting of lipid metabolites was achieved by (31)P labeling using the derivatizing agent 2-chloro-4,4,5,5-tetramethyldioxaphospholane. Lipids containing hydroxyl, aldehyde and carboxyl groups were selectively tagged with (31)P and then detected with good resolution using (31)P NMR by exploiting the 100% natural abundance and wide chemical shift range of (31)P. After standardizing the reaction conditions using representative compounds, the derivatization approach was used to profile lipids in human serum. The results show that the (31)P derivatization approach is simple, reproducible and highly quantitative, and has the potential to profile a number of important lipids in complex biological samples.


Assuntos
Lipídeos/sangue , Lipídeos/química , Metabolômica , Compostos Organofosforados/química , Fosforanos/química , Humanos , Lipídeos/classificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fósforo , Padrões de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA